PR&®TEGRITY

Protegrity Big Data Protector Guide 9.2.0.0

Created on: Aug 8, 2024



Protegrity Big Data Protector Guide 9.2.0.0 Copyright

Notice

Copyright

Copyright © 2004-2024 Protegrity Corporation. All rights reserved.
Protegrity products are protected by and subject to patent protections;
Patent: Attps.//www.protegrity.com/patents.

Protegrity logo is the trademark of Protegrity Corporation.

NOTICE TO ALL PERSONS RECEIVING THIS DOCUMENT

Some of the product names mentioned herein are used for identification purposes only and may be trademarks and/or registered
trademarks of their respective owners.

Windows, Azure, MS-SQL Server, Internet Explorer and Internet Explorer logo, Active Directory, and Hyper-V are registered
trademarks of Microsoft Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SCO and SCO UnixWare are registered trademarks of The SCO Group.

Sun, Oracle, Java, and Solaris are the registered trademarks of Oracle Corporation and/or its affiliates in the United States and other
countries.

Teradata and the Teradata logo are the trademarks or registered trademarks of Teradata Corporation or its affiliates in the United States
and other countries.

Hadoop or Apache Hadoop, Hadoop elephant logo, Hive, Presto, and Pig are trademarks of Apache Software Foundation.
Cloudera and the Cloudera logo are trademarks of Cloudera and its suppliers or licensors.

Hortonworks and the Hortonworks logo are the trademarks of Hortonworks, Inc. in the United States and other countries.
Greenplum Database is the registered trademark of VMware Corporation in the U.S. and other countries.

Pivotal HD is the registered trademark of Pivotal, Inc. in the U.S. and other countries.

PostgreSQL or Postgres is the copyright of The PostgreSQL Global Development Group and The Regents of the University of
California.

AlX, DB2, IBM and the IBM logo, and z/OS are registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide.

a Confidential 2


https://www.protegrity.com/patents

Protegrity Big Data Protector Guide 9.2.0.0 Copyright

Utimaco Safeware AG is a member of the Sophos Group.

Xen, XenServer, and Xen Source are trademarks or registered trademarks of Citrix Systems, Inc. and/or one or more of its
subsidiaries, and may be registered in the United States Patent and Trademark Office and in other countries.

VMware, the VMware “boxes” logo and design, Virtual SMP and VVMotion are registered trademarks or trademarks of VMware, Inc.
in the United States and/or other jurisdictions.

Amazon Web Services (AWS) and AWS Marks are the registered trademarks of Amazon.com, Inc. in the United States and other
countries.

HP is a registered trademark of the Hewlett-Packard Company.

HPE Ezmeral Data Fabric is the trademark or registered trademark of Hewlett Packard Enterprise in the United States and other
countries.

Dell is a registered trademark of Dell Inc.

Novell is a registered trademark of Novell, Inc. in the United States and other countries.
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
Mozilla and Firefox are registered trademarks of Mozilla foundation.

Chrome and Google Cloud Platform (GCP) are registered trademarks of Google Inc.

a Confidential 3



Protegrity Big Data Protector Guide 9.2.0.0 Table of Contents

Table of Contents

(6] o)V g T | o | FE TSSOSO TSSOSO TSP TSP TSP PPTPTPORPPPRPRTR 2
Chapter 1 INtroduCtion 0 THIS GUITE. ..........ciiiiiieiicree bbb bbbt b bbb bt b s bbbt ne s 6
1.1 Sections CONtAINE IN thiS GUITE.........c.ciiiiieriiieee bbbt b bbbt 6

1.2 Accessing the Protegrity dOCUMENTAtION SUITE..........cviiiiiiie e ste ettt re et te st e b et et e e e s enseraereeaearenrees 6
VATV Ta o o] oo [N ot o [oTotN [aaT=Ta 1 14T ] TSRS 6

1.2.2 Downloading product dOCUMENTALION..........cviieieiie ittt aeeteste s te s reste s be st e bestesr e b e e e e e e eneesaeneens 7
Chapter 2 Overview Of the Big Data PrOtECION..........ccviiiiicce ettt et et e s ae et e s e e ste e e steesaesreesaesreenee e 9
2.1 COMPONENES OF HAOOOP. ...ttt b et be e b b s e et e s e e st e st e bt e b e bt eb e eb e e bt eh e e b e e b e sa e b et e e e s ensab e e st eaeebenbe e 10
2.1.1 Hadoop Distributed File SYStEM (HDFS)......c.coiiiiiiiiiiiie ettt bbbttt sbe b e e 10

2.1 2 IMIAPREAUCE. ...tttk ekttt b e bt e b e s b eh e e b e b e ee e e 2R b 2R e 2R £ 2R £ e b £ 4Rt eh e eE £ e Ee e b e e b e e beeE e e b e b e e e ent e Rt e e entenears 10

2. 0.3 HIV. ettt bbb bR £ E b h e £ b bR £ R SRR e £ AR bR e £ R bR R e £ R bR e £ e R b b e e e bbbt e bbbt et 11

R o o OO TSSOSO TSP PP PRSP OPTRTPRPRO 11

2.5 HBSE. . .ttt ettt bRt e E £ oAb e R £ oAb e R £ SRR e AR £ £ Rt AR e e R e e RE e eRe e RE e AEe oA EeeEe e A EeeE £ e R b e eb e e b e ere e beenn e e 11

B LG [ ] o - OO OO PSSRSO US USSP 11

N A o 14 OO ST USURRR 11

2.2 Features of the Protegrity Big Data PrOTECIOL. .......c.coiiiieiiiise sttt bbb bbb et et neere e ene s 11

2.3 Using Protegrity Data Security Platform With HAd0O0P.........couoiiiiiiiiiee e 13

2.4 Overview of Hadoop AppPliCAtion PrOTECTION. ..........ciiiiiiiiiie ettt st sb bbbt er e ene s 14
2.4.1 Protection in MaPREAUCE JODS. ..ot bbb bbbt e b et be b e 14

2.4.2 ProteCtion iN HIVE QUETIES. .......ccuiieeiieieeitesteeste st e ste it e s te et e s te et e steesesbeestesteesbesseesteaseesteeseesbeessasbsensesseentesaeeresaeeseesses 14

2.4.3 PrOteCtiON 1N PIQ JODS.... ..ttt ettt b ekt b e bt b e bt sb e b et ee e e e e e st ene et e e beabeebeneas 14

2.4.4 PrOTECTION TN HBASE. ......eitiiteitiiteeteite ettt ettt b bbb e e b et e s e e s e e b £ e h£eb e e £ e e bt eb e e beeb e sb e e b e b se e b es b e e entabeabeaneaneas 14

2.4.5 ProteCtion I IMPAIA........c.ooiiiiiie ettt bt bttt b et e st e bt e b e bt eb e ebe e be s b e nbenbeee et e e et eneereens 15

2.4.6 PrOTECTION TN SPAIK. ... .ottt b et b bt b e bt e b e e b e s b ee e b e st e e e e e Rt e b e e Rt e bt e bt et e ebesbenbeneesbenas 15

2.5 Data Security Policy and ProteCtion IMELNOUS. ........c.oouiiiiiiiiie ettt e 15

2.6 Installing and Uninstalling Big Data PrOTECIO...........ciiieiiiiiieieieieese sttt sttt ettt sttt be b sbe st e 16

2.7 UNderstanding the AFCRITECIUNE. ........oe ittt bt ettt b et e be bt e be s b sb e st e be st et aneeneennanea 16

2.8 WOrKing With the LOG FOWAITET . ..........ciiiiiii ettt ettt b e b e bbb e e b e e e et e s e e b e e bt e bt ebeebesbesbeebesbenaen 16
2.8.1 LOGQING ATCNITECTUIE. ... ittt sttt et ettt et b e bt b e b e sb e b e beee e e e st e e e Re e R e eb e e Reebeeb e e b e e beebenbesee b enbe s ennans 17

2.8.2 Logging Architecture of the Big Data Protector Cluster without the ProXY..........ccccoviiiininenencieeeeceee e 17

2.8.3 Logging Architecture of the Big Data Protector Cluster with the ProXy.........cccooceoiiiiiiiiiinieine e 18
Chapter 3 Hadoop APPIICATION PFOTECTON ..........iuiiitiiitiieiiiee ettt b bbb bbbt b et nb et b et nnns 19
3.1 Using the Hadoop APPHCALION PrOTECION..........ciiiiiiieiiieiiteste ettt b et bbb et se bbb sbenea 19

B2 PIEIBOUISITES. ...ttt etttk ettt bbbt b st b s e bt e b e ebe e ekt e e e b oAb e b€ e E e bt e R e R e e h e R e e b e R e e b e e e b e e e b e e ekt e ek e ne e bt ne b e nR b e b ne s 19

BB MAPREAUCE APIS...... ettt ettt ettt e et b bt e bbb e b eb e e e b e bt e E ekt e b e b bR Rt bRt bRt bt eb et ettt nr et e 20

3.2 SAMPIE COUE USAJE. ......eivireitiriitiieitt ettt sttt b bt b et b bbb bt bbb s b8 bR bt b e e bbbt bbb bbbt ettt 20
3.4.1 Main JOb Class — PrOtECIDAIAJAVA. ........cviviieiirieiirieiesieeste sttt ettt ettt sb et b et sb et b ettt be et e 20

3.4.2 Mapper Class — ProteCtDataAMaPPEL.JAVA. .........curitiriiirieiiieetisteiesiee sttt e ettt sb bbbt b e b s b e ens 21

3.5 HIVE UDFS.... . iiictiiiisiisie ettt sttt st a e s et e st es e s e e s e e Rt et e e Ee s Re e e e Ee e e e e e st e et en s e s e e ReeRe e Rt e R e e Rt e EenEenEenReee et et e e enen 23

BB PIG UDFS.....tiictiieeie ettt etttk ek e bbbt bRt bRt b e b e £ e k£ R e bR R AR R SRR R R bR bRt bt btk ettt et 23

(O T T =T g 1 T -SSP 24
4.1 OVErvIeW Of the HBASE PrOLECION.........ciiiiieiieiiiietees ettt bbbt 24

A S T T 0 Tt (o] U T o[ PSP PT PRSP 24

4.3 Adding Data Elements and Column Qualifier Mappings to a New Table..........c.cocoviiiiiiiie i 25

4.4 Adding Data Elements and Column Qualifier Mappings to an Existing Table..........c.cccocviiiiiiiiiiiieicceeecr e 25

4.5 Inserting Protected Data into @ ProteCted Table..........cociiiiiiiieiiii e e et es 26

4.6 Retrieving Protected Data from @ Table.........cc.oiiiiiieice e sttt r et e e na e reerenns 26

4.7 HBASE COMMANUS. ... .cviuiiteteiiist ettt ettt b bbbt e b b e b b E R b8 e R R E et e b bt e R bRt E b bt e b bt n b 27

a Confidential 4



Protegrity Big Data Protector Guide 9.2.0.0 Table of Contents

4.8 INQESTING DA SECUEIY.......ieitiiiiiit ittt bbbt b b bbb b b s b s bbb bbbt b et b bt bbb 27
4.9 EXIraCting Data SECUIEIY.........c.o it h bbbt b ekt e bt s bbb bt e b st eb et ab e e abe e b e 27
(O gT=T o] (T gt [ 4] o TSSOSOV PR ROPRPRO 28
5.1 OVErview Of the IMPala PrOtECION. ......ciuiieieieiceee sttt se et e e ae et et e s ae st et see e et e e e e enaeneeneaneerenreans 28
oI L] o L T () o (o) 0 LY=o 28
5.2.1 Creating the /user/impala path in Impala with SUPErgroup PermiSSIONS........cccvevvviirireresesese e e e 28
ST IN 1] o 1= 1 SRS 29
5.4 Inserting Data from @ File iNt0 @ TabI.........cvoiiiiecece ettt e e sa e s eneeneeneenens 29
5.4.1 Preparing the environment for the Hasic_Sample.CSVTile.........o e 29
5.4.2 Populating the table sample_table from the basic_sample data.csvTile...........ccovviiiiniiiiiicieeee e 29
5.5 ProteCting EXISTING DaAa.......cceiiieiiiriirieiieieiiesieeeeetase s e stesteste s e ste e seesseseeseessesseseeseeseesessesseasestesaesseeeseeseensesseseensansaseanensens 30
5.6 UNProtecting the ProtECIEA Dala.........c.ccuiiviieieiirerisisesie ettt e e e e e esaeseeseesestesresbeseenteseenseneenneneens 31
5.7 Retrieving Data frOm @ Table.........cvoiiioecece et sttt a et e et et et e e eneereereeneerenrenrenrens 31
(O T T 0 (=T ST 0= 1 - 32
6.1 OVErVIEW OF the SPArK PrOTECION........ceiiiiieiieei ettt bbb bbb e b et et et et e b et beebe b e 32
I o 14 N (0] (=T (o] gl U ST Vo OSSP U UR VR URPRURTURPRR 32
5.3 SPAIK JAVA. ...ttt bttt h R E Rt R R e R e h e R R R oAb e R R oA £ oA £ e R £ oA £ eR £ b £ R e ehe bt b sR e b e bbb et e e e 33
B.3.1 SPATK JAVA APIS.......eoeeeee ettt bbbt b bR b bR R e E e Rt E £ e R e R e b £ R e Rt bt b et nb e b e b e neneas 33
6.3.2 Spark APIs and Supported ProteCtion IMEtNOGS. ...........coiiiiiiiiiee e b 33
6.3.3 Loading the Cleartext Data from a File t0 HDFS..........ooiiiiii e e 34
6.3.4 Protecting the EXISHING DALA.........ccciiriiieiiieieiieeee ettt sttt ekttt b e bt bt sb e b e b nb et e b e e et ebeebesneane s 35
6.3.5 UNProtecting the ProteCIEA DIALA..........cciiiuirieie ettt bbbttt ettt b e sb et b e bt se b e e eneebenns 35
6.3.6 Retrieving the Unprotected Data from @ File............oooiiiiiii e e 36
B.4 SPAIK SQL... ettt sttt sttt E e E R e bRt bR et E e e eEe e Ee e R e R AR e R e R e R e R e Re b e R e e bRt e Rt e Rt Rt ettt et 36
B.4. 1 DALAFTAIMES. ... coitiiieeiteeee ettt ettt ettt ettt he et e e bt e e e s bt e bt eE £ e b £ e R e e R e ea b e eb e e ae e AR e e e e eE e e AR e e R e e AR e eE e e nbeeh b e nbeenneebe e b e nneenas 36
oI B T@ T O] 1 (=)« SOOI 36
B.4.3 SPATK SQL UDFS......cuiitiiitiiiete ettt sttt et be et st e b sb et e st e b e e b e b e e b e s e e b e s e et e e ebe e ebe e ebeneebe st ebeneebesberenaereares 37
6.4.4 Inserting Data from a File iNt0 @ TabIe.........coiiiiii e e 37
6.4.5 ProteCting EXISTING DAA........c.ciiiiriiieiieiiieie ettt ettt b e bt b e bt e b et sb e s b e b bt e et e e eneeneens 37
6.4.6 Unprotecting and Viewing the ProteCted Data............cccoeiiiiriiiiiieienese et e 38
6.4.7 Retrieving Data from @ TaDIE.........o.ooiii ettt bbb bbb e e e 38
6.4.8 Calling Spark SQL UDFs from Domain Specific Language (DSL)........ccootiiririrenene et 39
B.5 SPAIK SCAIA.......cueeieeeeeiet ettt bbb e b E e R R R £ R £ b £ R e R e R e R SR oAb ek R e b e R b e R e e Rt e Rt eb e b beebe st nae 41
6.5.1 Sample Code Usage for SPark (SCaIA).......coe i bbb et 41
6.5.1.1 Main Job Class for Protect Operation — ProtectData.SCala...........ccooveireiiiiiiiiiine e 41
6.5.1.2 Main Job Class for Unprotect Operation — UnProtectData.SCala...........cccovririieninie i 42
6.5.1.3 Utility to call Protect or Unprotect Function — Dataloader.scala.............coeveieieniiiiiiiceee e 42
6.5.1.4 ProteCtFUNCIION.SCAIA. ... .otttk bt bbb s b b bbb et e e e s e b e ens 43
6.5.1.5 UNProteCtFUNCIION.SCAIAL ... .ottt bbb bbbt e et e e e bt ebe e 44
Chapter 7 APPeNndiX: RETUIN COOES.......cc.i ittt b et e e e et e st e bt e st e be e bt e b e ebesbesbesbesbe e b e sbese e b e s b e e e e aneasenne e 45
Appendix 8 Appendix: Migrating Tokenized Unicode Data from and to a Teradata Database..........cccccccovovnviiiincnicnnn, 49
8.1 Migrating Tokenized Unicode Data from a Teradata Database..........c.ccuvvivrireriininieserieieeeseee st sre e seeseeens 49
8.1.1 Migrating Tokenized Unicode data from Teradata database to Hive or Impala and unprotecting it using Hive
Lo G 0] 2= L= W 0 () o (o] PSSR 49
8.1.2 Migrating Tokenized Unicode data from a Teradata database to Hadoop and Unprotecting it using MapRe-
0[N ToT= I 0 G =T S 0] () (o] RS PSS 50
8.2 Migrating Tokenized Unicode Data to a Teradata Database.........c.ccvviviviiiierininese et 50
8.2.1 Migrating Tokenized Unicode data using Hive or Impala protector to Teradata database...........c.ccocevververververcnnnnnn, 51
8.2.2 Protecting Unicode data using MapReduce or Spark protector and Migrating it to a Teradata database.................. 51

a Confidential 5



Protegrity Big Data Protector Guide 9.2.0.0 Introduction to This Guide

Chapter 1

Introduction to This Guide

1.1 Sections contained in this Guide
1.2 Accessing the Protegrity documentation suite

This guide provides information about configuring and using the Protegrity Big Data Protector (BDP) for Hadoop.

This guide should be used along with the Protegrity Enterprise Security Administrator Guide 9.2.0.0, which explains the mechanism
of managing the data security policy.

It is recommended that you first read the sections explaining the basics of Big Data Protector in this guide.

1.1 Sections contained in this Guide

This section provides a short description about the sections contained in this guide.

The guide is broadly divided into the following sections:

Section /ntroduction to This Guide defines the purpose and scope for this guide. In addition, it explains how information is
organized in this guide.

Section Overview of the Big Data Protector provides a general idea of Hadoop and how it has been integrated with the
Big Data Protector. In addition, it describes the protection coverage of various Hadoop ecosystem applications, such as
MapReduce, Hive and Pig.

Section Hadoop Application Protector provides information about Hadoop Application Protector.
Section HBase provides information about the Protegrity HBase protector.
Section /mpala provides information about the Protegrity Impala protector.

Section Spark provides information about the Protegrity Spark Java and Spark SQL protectors. In addition, it provides
information about Spark Scala.

Section Appendix: Return Codes provides information about all possible error codes and error descriptions for Big Data
Protector.

Section Appendix: Migrating Tokenized Unicode Data from and to a Teradata Database describes procedures for migrating
tokenized Unicode data from and to a Teradata database.

1.2 Accessing the Protegrity documentation suite

This section describes the methods to access the Protegrity Documentation Suite using the My.Protegrity portal.

1.2.1 Viewing product documentation

The Product Documentation section under Resources is a repository for Protegrity product documentation. The documentation
for the latest product release is displayed first. The documentation is available in the HTML format and can be viewed using your
browser. You can also view and download the .pdffiles of the required product documentation.

Confidential 6


https://my.protegrity.com

Protegrity Big Data Protector Guide 9.2.0.0 Introduction to This Guide

Log in to the My.Protegrity portal.
Click Resources > Product Documentation.

Click a product version.
The documentation appears.

RESOURCES / PRODUCT DOCUMENTATION /

Skip to content

+ Emfﬂg”(é DTlﬂ Security Platform X Protegrity Documentation Suite search: (Search ) B ponceor
eature Guide

+ Protegrity Installation Guide

+ Protegrity Upgrade Guide

+ Protegrity Appliances Overview Guide

+ Protegrity Enterprise Security
Administrator Guide

+ Protegrity Data Security Gateway User
Guide

+ Protegrity Data Security Gateway
(DSG) Immutable Policy User Guide for
AWS

+ Protegrity Data Security Gateway
(DSG) Immutable Policy User Guide for
OpenShift

+ Protegrity Data Security Gateway
(DSG) Immutable Policy User Guide for

P

+ Protegrity Data Security Gateway
(DSG) Immutable Policy User Guide for
Azure

+ Protegrity Discover Guide
+ Protegrity Log Forwarding Guide

+ Protegrity Storage Unit Guide

+ Audit Store Guide f— f—
PR&®TEGRITY
+ Protegrity Anonymization API Guide

+ Protegrity Protection Methods
Reference Guide

+ Protegrity Policy Management Guide

+ Protegrity Key Management Guide

+ Protegrity Certificate Management
Guide

+ JDBC Protector Guide

+ Protegrity Application Protector Guide H m H H

+ Protegrity Application Protector Go PrOtegrlty Documentation Suite
Immutable Policy User Guide for
OpenShift Gen2

+ Protegrity Application Protector Java
Immutable Policy User Guide for AWS
n2

+ Protegrity Application Protector Java
immutable Policy User Guide for Copyright © Protegrity USA, Inc. All rights reserved. www.protegrity.com
Azure

+ Protegrity Application Protector Java
Immutable Policy User Guide for
Azure Gen2

+ Protegrity Application Protector Java
Immutable Policy User Guide for
Openshift

+ Protegrity REST Container Immutable
Policy User Guide for AWS Gen2

+ Protegrity REST Container Immutable

Policy User Guide for OpenShift

+ Protegrity Application Protector On-
Premises Immutable Policy User

‘d

Figure 1-1: Documentation

Expand and click the link for the required documentation.

If required, then enter text in the Search field to search for keywords in the documentation.
The search is dynamic, and filters results while you type the text.

6. Click the Print PDF icon from the upper-right corner of the page.
The page with links for viewing and downloading the guides appears. You can view and print the guides that you require.

1.2.2 Downloading product documentation

This section explains the procedure to download the product documentation from the My.Protegrity portal.

1. Click Product Management > Explore Products.

2. Select Product Documentation.
The Explore Products page is displayed. You can view the product documentation of various Protegrity products as per their
releases, containing an overview and other guidelines to use these products at ease.

Click View Products to advance to the product listing screen.
Click the View icon (<) from the Action column for the row marked On-Prem in the Target Platform Details column.
If you want to filter the list, then use the filters for: OS, Target Platform, and Search fields.

a Confidential 7


https://my.protegrity.com
https://my.protegrity.com

Protegrity Big Data Protector Guide 9.2.0.0 Introduction to This Guide

5. Click the icon for the action that you want to perform.

a Confidential 8



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

Chapter 2

Overview of the Big Data Protector

2.1 Components of Hadoop

2.2 Features of the Protegrity Big Data Protector

2.3 Using Protegrity Data Security Platform with Hadoop
2.4 Overview of Hadoop Application Protection

2.5 Data Security Policy and Protection Methods

2.6 Installing and Uninstalling Big Data Protector

2.7 Understanding the Architecture

2.8 Working with the Log Forwarder

The Protegrity Big Data Protector was the first to support fine grained data protection on Hadoop and enterprise-ready Hadoop native
encryption.

Protegrity has regularly updated Big Data Protector to include support for MapReduce, Hive, Pig, HBase, Impala, and Spark.

Starting from the Big Data Protector, version 7.0, which released in 2017, support for native installers and rolling restarts for the
Cloudera and Ambari environments is added.

Protegrity also supports Spark SQL, Spark streaming, Kafka, and Flume type of real-time ingestion tools. You can achieve both, batch
and real time data protection, using Protegrity Big Data Protector.

The following are some of the use cases that the Protegrity Big Data Protector satisfies:

» Data protection at source applications: In this case, the sensitive data is fully protected wherever it flows, including the Hadoop
ecosystem.

In addition, it ensures that the Hadoop system, which stores the protected data, is not brought into scope for PCI, Pll, GDPR,
HIPPA, FIPS, and other compliance policies.

In the Protegrity Big Data Protector for Apache Hadoop, the data is split and shared with all the data nodes in the Hadoop cluster. The
Big Data Protector is deployed on each of these nodes where the protection enforcement policies are shared.

The Protegrity Big Data Protector is scalable and new nodes can be added as required. It is cost effective since massively parallel
computing is done on commodity servers, and it is flexible as it can work with data from any number of sources. The Big Data
Protector is fault tolerant as the system redirects the work to another node if a node is lost. It can handle structured data irrespective of
their native formats.

The Big Data Protector protects data, which is handled by various Hadoop applications and protects files stored in the cluster.
MapReduce, Hive, Pig, HBase, Spark, and Impala can use Protegrity protection interfaces to protect data as it is stored or retrieved
from the Hadoop cluster. All standard protection techniques offered by Protegrity are applicable to Big Data Protector.

a Confidential 9



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

For more information about the available protection options, such as data types, Tokenization or Encryption types, or length preserving
and non-preserving tokens, refer to Protection Methods Reference Guide 9.2.0.0.

2.1 Components of Hadoop

The Big Data Protector works on the Hadoop framework as shown in the following figure.

Bl Applications

Data Access Framework

S EE

Data Storage Framework Data Processing Framework
(HDFS) (MapReduce)

Figure 2-1: Hadoop Components

Note:
The illustration of Hadoop components is an example.

Based on requirements, the components of Hadoop might be different.

Hadoop interfaces have been used extensively to develop the Big Data Protector. It is a common deployment practice to utilize
Hadoop Distributed File System (HDFS) to store the data, and let MapReduce process the data and store the result back in HDFS.

2.1.1 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) spans across all nodes in a Hadoop cluster for data storage. It links together the file
systems on many nodes to make them into one big file system. HDFS assumes that nodes will fail, so data is replicated across
multiple nodes to achieve reliability.

2.1.2 MapReduce

The MapReduce framework assigns work to every node in large clusters of commodity machines. MapReduce programs are sets
of instructions to parse the data, create a map or index, and aggregate the results. Since data is distributed across multiple nodes,
MapReduce programs run in parallel, working on smaller sets of data.

A MapReduce job is executed by splitting each job into small Map tasks, and these tasks are executed on the node where a
portion of the data is stored. If a node containing the required data is saturated and not able to execute a task, then MapReduce
shifts the task to the least busy node by replicating the data to that node. A Reduce task combines results from multiple Map
tasks, and store all of them back to the HDFS.

0 Confidential 10



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

2.1.3 Hive

The Hive framework resides above Hadoop to enable ad hoc queries on the data in Hadoop. Hive supports HiveQL, which is
similar to SQL. Hive translates a HiveQL query into a MapReduce program and then sends it to the Hadoop cluster.

2.1.4 Pig

Pig is a high-level platform for creating MapReduce programs used with Hadoop.

2.1.5 HBase

HBase is a column-oriented datastore, meaning it stores data by columns rather than by rows. This makes certain data access
patterns much less expensive than with traditional row-oriented relational database systems. The data in HBase is protected
transparently using Protegrity HBase coprocessors.

2.1.6 Impala

Impala is an MPP SQL query engine for querying the data stored in a cluster. It provides the flexibility of the SQL format and is
capable of running the queries on HDFS in HBase.

The Impala daemon runs on each node in the cluster, reading and writing to data in the files, and accepts queries from the Impala
shell command. The following are the core components of Impala:

* Impala daemon (/mpalag) — This component is the Impala daemon which runs on each node in the cluster. It reads and writes
the data in the files and accepts queries from the Impala shell command.

» Impala Statestore ( statestored) — This component checks the health of the Impala daemons on all the nodes contained in the
cluster. If a node is unavailable due to any error or failure, then the Impala statestore component informs all other nodes about
the failed node to ensure that new queries are not sent to the failed node.

« Impala Catalog (catalogd) — This component is responsible for communicating any changes in the metadata received from the
Impala SQL statements to all the nodes in the cluster.

2.1.7 Spark

Spark is an execution engine that carries out batch processing of jobs in-memory and handles a wider range of computational
workloads. In addition to processing a batch of stored data, Spark is capable of manipulating data in real time.

Spark leverages the physical memory of the Hadoop system and utilizes Resilient Distributed Datasets (RDDs) to store the data
in-memory and lowers latency, if the data fits in the memory size. The data is saved on the hard drive only if required.

2.2 Features of the Protegrity Big Data Protector

The Protegrity Big Data Protector (Big Data Protector) uses patent-pending vaultless tokenization and central policy control for
access management and secures sensitive data at rest in the following areas:

e Datain HDFS

« Data used during MapReduce, Hive and Pig processing, and with HBase, Impala, and Spark

« Data traversing enterprise data systems

The data is protected from internal and external threats, and users and business processes can continue to utilize the secured data.

8 Confidential 11



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

Data protection may be by encryption or tokenization. In tokenization, data is converted to similar looking inert data known as
tokens where the data format and type can be preserved. These tokens can be detokenized back to the original values when it is
required.

Protegrity secures files with volume encryption and also protects data inside files using tokenization and strong encryption
protection methods. Depending on the user access rights and the policies set using Policy management in ESA, this data is
unprotected.

The Protegrity Hadoop Big Data Protector provides the following features:

« Provides fine grained field-level protection within the MapReduce, Hive, Pig, HBase, and Spark frameworks.
* Provides directory and file level protection (encryption).
< Provides Protegrity Format Preserving Encryption (FPE) method for structured data. The following data types are supported:
e Numeric (0-9)
e Alpha (a-z, A-2)
e Alpha-Numeric (0-9, a-z, A-Z)
e Credit Card (0-9)
* Unicode Basic Latin and Latin-1 Supplement Alpha
e Unicode Basic Latin and Latin-1 Supplement Alpha-Numeric
For more information about FPE, refer to Protection Methods Reference Guide 9.2.0.0.

« Retains distributed processing capability as field-level protection is applied to the data.
» Protects data in the Hadoop cluster using role-based administration with a centralized security policy.

» Starting from the Big Data Protector, version 7.0 release, native installers for the Cloudera and Ambari environments are
being provided. These new installers simplify the task of installing, configuring, and managing Big Data Protector using
Cloudera Manager or the Ambari Ul.

< Simplified installation, administration, and management of Big Data Protector using the following components:

« Parcels: In Cloudera Manager, a Big Data Protector Parcel, which is a single consolidated file, contains all the required
files for installing and using Big Data Protector on a cluster and the metadata used by Cloudera Manager.

e Custom Service Descriptors (CSDs): In Cloudera Manager, a CSD contains all the configurations required to describe and
manage the Big Data Protector services. The CSDs are provided as Jar files.

e Management Packs: In Ambari, a Big Data Protector management pack, which is a single consolidated file, contains all
the required files for installing and using Big Data Protector on a cluster and the metadata used by the Ambari UI.

« Easy monitoring of the Big Data Protector services, such as, BDP PEP, using the Cloudera Manager Ul instead of the CLI.
» Easy monitoring of the Big Data Protector services, such as BDP PEP and BDP HDFSFP, using Ambari instead of the CLI.
e Automatic deactivation of older Big Data Protector parcels in Cloudera Manager on update.

* Provides logging and viewing data access activities and real-time alerts with a centralized monitoring system.

» Ensures minimal overhead for processing secured data, with minimal consumption of resources, threads and processes, and
network bandwidth.

< Provides transparent data protection with Protegrity HBase protectors.

Note:
The following figure illustrates the various components in an Enterprise Hadoop ecosystem.

8 Confidential 12



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

Integration

Script| SQL NoSQL| Batch Stream In- Search Others
Memory

Pig Hive Hbase | Map | Storm Solr Isv

Reduce Spark Engines

595 5 5 S -

YARN: Data Operating System
(Cluster Resource Management)

HDFS a

(Hadoop Distributed File System) Ranger Zookeeper

| Kerberos

Figure 2-2: Enterprise Hadoop Components

Currently, Protegrity supports MapReduce, Hive, Pig, and HBase which utilize HDFS as the data storage layer. The following
points can be referred to as general guidelines:

» Sgoop: Sqoop can be used for ingestion into HDFSFP protected zone (For Hortonworks, Cloudera, and Pivotal HD).
» Beeline and Hue on Cloudera: Beeline and Hue are certified with the Hive protector.

< Beeline and Hue on Hortonworks & Pivotal HD: Beeline and Hue are certified with the Hive protector.

* Ranger (Hortonworks): Ranger is certified to work with the Hive protector.

» Sentry (Cloudera): Sentry is certified with the Hive protector and Impala protector.

e Spark

e Impala

We neither support nor have certified other components in the Hadoop stack. We strongly recommend consulting Protegrity,
before using any unsupported components from the Hadoop ecosystem with our products.

2.3 Using Protegrity Data Security Platform with Hadoop

To protect data, the components of the Protegrity Data Security Platform are integrated into the Hadoop cluster.

The Enterprise Security Administrator (ESA) is a soft appliance that needs to be pre-installed on a separate server, which is used
to create and manage policies.

For more information about installing the ESA, and creating and managing policies, refer to /nstallation Guide 9.2.0.0and Policy
Management Guide 9.2.0.0 respectively.

Each task runs on a node under the same Hadoop user. Every user has a policy deployed for running their jobs on this system.
Hadoop manages the accounts and users. You can get the Hadoop user information from the actual job configuration.

HDFS implements a permission model for files and directories, based on the Portable Operating System Interface (POSIX) for
Unix model. Each file and directory is associated with an owner and a group. Depending on the permissions granted, users for the
file and directory can be classified into one of these three groups:

e Owner
e Other users of the group
e All other users

& Confidential 13



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

2.4 Overview of Hadoop Application Protection

This section describes the various levels of protection provided by Hadoop Application Protection.

2.4.1 Protection in MapReduce Jobs

A MapReduce job in the Hadoop cluster involves sensitive data. You can use Protegrity interfaces to protect data when it is saved
or retrieved from a protected source. The output data written by the job can be encrypted or tokenized. The protected data can be
subsequently used by other jobs in the cluster in a secured manner. Field level data can be secured and ingested into HDFS by
independent Hadoop jobs or other ETL tools.

For more information about secure ingestion of data in Hadoop, refer to section /ngesting Files Using Hive Staging.
For more information on the list of available APIs, refer to section MapReduce APIs.

If Hive queries are created to operate on sensitive data, then you can use Protegrity Hive UDFs for securing data. While inserting
data to Hive tables, or retrieving data from protected Hive table columns, you can call Protegrity UDFs loaded into Hive during
installation. The UDFs protect data based on the input parameters provided.

Secure ingestion of data into HDFS to operate Hive queries can be achieved by independent Hadoop jobs or other ETL tools.

For more information about securely ingesting data in Hadoop, refer to section /ngesting Data Securely.

2.4.2 Protection in Hive Queries

Protection in Hive queries is done by Protegrity Hive UDFs, which translates a HiveQL query into a MapReduce program and
then sends it to the Hadoop cluster.

For more information on the list of available UDFs, refer to section Hive UDFs.

2.4.3 Protection in Pig Jobs

Protection in Pig jobs is done by Protegrity Pig UDFs, which are similar in function to the Protegrity UDFs in Hive.

For more information on the list of available UDFs, refer to section Pig UDFs.

2.4.4 Protection in HBase

HBase is a database which provides random read and write access to tables, consisting of rows and columns, in real-time. HBase
is designed to run on commaodity servers, to automatically scale as more servers are added, and is fault tolerant as data is divided
across servers in the cluster. HBase tables are partitioned into multiple regions. Each region stores a range of rows in the table.
Regions contain a datastore in memory and a persistent datastore(HFile). The Name node assigns multiple regions to a region
server. The Name node manages the cluster and the region servers store portions of the HBase tables and perform the work on the
data.

The Protegrity HBase protector extends the functionality of the data storage framework and provides transparent data protection
and unprotection using coprocessors, which provide the functionality to run code directly on region servers. The Protegrity
coprocessor for HBase runs on the region servers and protects the data stored in the servers. All clients which work with HBase
are supported.

The data is transparently protected or unprotected, as required, utilizing the coprocessor framework.

a Confidential 14



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

For more information about HBase, refer to section HBase.

2.4.5 Protection in Impala

Impala is an MPP SQL query engine for querying the data stored in a cluster. It provides the flexibility of the SQL format and is
capable of running the queries on HDFS in HBase.

The Protegrity Impala protector extends the functionality of the Impala query engine and provides UDFs which protect or
unprotect the data as it is stored or retrieved.

For more information about the Impala protector, refer to section /mpala.

2.4.6 Protection in Spark

Spark is an execution engine that carries out batch processing of jobs in-memory and handles a wider range of computational
workloads. In addition to processing a batch of stored data, Spark is capable of manipulating data in real time. You can also
utilise Spark Streaming to process live data streams and store the processed data in Hadoop.

The Protegrity Spark Java protector extends the functionality of the Spark engine and provides Java APIs that protect, unprotect,
or reprotect the data as it is stored or retrieved.

For more information about the Spark Java and SQL protectors, refer to section Spark.

The Protegrity Spark Java protector extends the functionality of the Spark engine and provides Java APIs that protect, unprotect,
or reprotect the data as it is stored or retrieved.

The Protegrity Spark SQL protector provides native UDFs that can be utilized with Spark Scala to protect, unprotect, or reprotect
the data as it is stored or retrieved.

You can create and submit Spark jobs using the methods listed in the following table.

Table 2-1: Creating and Submitting Spark Jobs

To create and submit Spark jobs with: Refer to section:

Spark Java APIs Spark Java

Spark SQL UDFs Spark SQL

Spark Scala Spark Scala

PySpark <create a section and link>

2.5 Data Security Policy and Protection Methods

A data security policy establishes processes to ensure the security and confidentiality of sensitive information. In addition,
the data security policy establishes administrative and technical safeguards against unauthorized access or use of the sensitive
information.

Depending on the requirements, the data security policy typically performs the following functions:

» Classifies the data that is sensitive for the organization.

» Defines the methods to protect sensitive data, such as encryption and tokenization.

« Defines the methods to present the sensitive data, such as masking the display of sensitive information.
» Defines the access privileges of the users that would be able to access the dasta.

a Confidential 15



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

» Defines the time frame for privileged users to access the sensitive data.
» Enforces the security policies at the location where sensitive data is stored.

e Provides a means of auditing authorized and unauthorized accesses to the sensitive data. In addition, it can also provide a
means of auditing operations to protect and unprotect the sensitive data.

The data security policy contains a number of components, such as, data elements, datastores, member sources, masks, and roles.
The following list describes the functions of each of these entities:

« Data elements define the data protection properties for protecting sensitive data, consisting of the data securing method, data
element type and its description. In addition, Data elements describe the tokenization or encryption properties, which can be
associated with roles.

« Datastores consist of enterprise systems, which might contain the data that needs to be processed, where the policy is
deployed and the data protection function is utilized.

* Member sources are the external sources from which users (or members) and groups of users are accessed. Examples are a
file, database, LDAP, and Active Directory.

< Masks are a pattern of symbols and characters, that when imposed on a data field, obscures its actual value to the user. Masks
effectively aid in hiding sensitive data.

* Roles define the levels of member access that are appropriate for various types of information. Combined with a data element,
roles determine and define the unique data access privileges for each member.

Note: For more information about the data security policies, protection methods, and the data elements supported by the components of the
Big Data Protector, refer to Protection Methods Reference Guide 9.2.0.0.

2.6 Installing and Uninstalling Big Data Protector

Note: For more information about installing and uninstalling the Big Data Protector, refer to /nstallation Guide 9.2.0.0.

2.7 Understanding the Architecture

The Log Forwarder is a log processor tool running along with the PEP server on a cluster node. It serves the purpose of
collecting, aggregating, caching, and moving the logs from the PEP server (Application log) and the Big Data Protector (Audit
log) to the Audit Store on the ESA and PSU.

The Log Forwarder uses the 15780 port, which is configurable, to receive Audit Log and Protection Log on each cluster node and
send the logs to the Appliance running the Audit Store. The appliance can be the ESA or the Protegrity Storage Unit (PSU). The
Appliance communicates with the Log Forwarder using the port 9200.

Note:

e For more information about the Protegrity Storage Unit (PSU), refer the Protegrity Storage Unit Guide 9.2.0.0.
e For more information about logging, refer to the Protegrity Log Management Guide 9.2.0.0.

» For more information about the Audit Store, refer to the Audit Store Guide 9.2.0.0.

2.8 Working with the Log Forwarder

The Log Forwarder is a log processor tool running along with the PEP server on a cluster node. It serves the purpose of
collecting, aggregating, caching, and moving the logs from the PEP server (Application log) and the Big Data Protector (Audit
log) to the Audit Store on the ESA and PSU.

8 Confidential 16



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

The Log Forwarder uses the 15780 port, which is configurable, to receive Audit Log and Protection Log on each cluster node and
send the logs to the Appliance running the Audit Store. The appliance can be the ESA or the Protegrity Storage Unit (PSU). The
Appliance communicates with the Log Forwarder using the port 9200.

For more information about the Protegrity Storage Unit (PSU), refer the Protegrity Storage Unit Guide 9.1.0.0.
For more information about logging, refer to the Protegrity Log Management Guide 9.1.0.0.
For more information about the Audit Store, refer to the Audit Store Guide 9.1.0.0.

The Log Forwarder aggregates logs at 10 second intervals. For the Big Data Protector, the components of Log Forwarder are
configured in the pepserver.cfgfile.

For more information about the Log Forwarder related configurations, refer to the section Appendix. PEP Server Configuration
Filein the Protegrity Installation Guide 9.1.0.0.

2.8.1 Logging Architecture

Depending on the proxy configuration of the Big Data Protector, the logging architecture can be specified as following types:

* Logging Architecture of the Big Data Protector cluster without the Proxy
e Logging Architecture of the Big Data Protector cluster with the Proxy

2.8.2 Logging Architecture of the Big Data Protector Cluster without the Proxy

This section explains the logging architecture of the Big Data Protector cluster without the Proxy.

PEP Server «—r Denotes connection between

H Log Forwarder and Audit Store
i through port 9200
H

Denotes connection
between PEP server and
ESA through port 8443

i
'
H
H
i
|
H
H
H

i Y

i

a IPC a ' £
Protector PEP Server i
H
Appiication !
H
i
H

Audit Logs
gs.

ESA a

TLS: 9200

Audit Store

H
H
H
5
H

- = )
H

1 [Nodes :

: : PASl

H
PC H
Protector PEP Server 1

Appiication

1
4

Audit Logs i
ES :
15780 H

H

H

1

H

1

TLS

Figure 2-3: Big Data Protector Cluster Logging Architecture without the Proxy

& Confidential 17



Protegrity Big Data Protector Guide 9.2.0.0 Overview of the Big Data Protector

In a multi-node architecture, the Log Forwarder, on each cluster node, collects the Application and Audit logs and the Big Data
Protector and sends the logs to the to the Appliance running the Audit Store. The appliance can be the ESA or the Protegrity

Storage Unit (PSU).

2.8.3 Logging Architecture of the Big Data Protector Cluster with the Proxy

This section explains the logging architecture of the Big Data Protector cluster with the Proxy.

Figure 2-4: Big Data Protector Cluster Logging Architecture with the Proxy

In this scenario, the Log Forwarder, on each cluster node, collects the application and audit logs and the Big Data Protector and
sends the logs to the Proxy. The Proxy sends the logs to the appliance running the Audit Store. The appliance can be the ESA or

the Protegrity Storage Unit (PSU).

& Confidential 18



Protegrity Big Data Protector Guide 9.2.0.0 Hadoop Application Protector

Chapter 3

Hadoop Application Protector

3.1 Using the Hadoop Application Protector
3.2 Prerequisites

3.3 MapReduce APIs

3.4 Sample Code Usage

3.5 Hive UDFs

3.6 Pig UDFs

3.1 Using the Hadoop Application Protector

Various jobs written in the Hadoop cluster require data fields to be stored and retrieved. This data requires protection when it is at
rest. The Hadoop Application Protector provides MapReduce, Hive and Pig the power to protect data while it is being processed
and stored. Application programmers using these tools can include Protegrity software in their jobs to secure data.

For more information about using the protector APIs in various Hadoop applications and samples, refer to the following sections.

3.2 Prerequisites

Ensure that the following prerequisites are met before using Hadoop Application Protector:

* The Big Data Protector is installed and configured in the Hadoop cluster.

e The security officer has created the necessary security policy which creates data elements and user roles with appropriate
permissions.

Note: For more information about creating security policies, data elements and user roles, refer to Policy Management Guide 9.2.0.0.
e The policy is deployed across the cluster.

Note: For more information about the list of all APIs available to Hadoop applications, refer to sections MapReduce APIs, Hive UDFs, and
Pig UDFs.

8 Confidential 19



Protegrity Big Data Protector Guide 9.2.0.0 Hadoop Application Protector

3.3 MapReduce APIs

For more information about the MapReduce APIs, refer to Protegrity APIs, UDFs, and Commands Reference Guide Release
9.2.0.0.

Note:
The Protegrity MapReduce protector only supports bytes converted from the string data type.

If any other data type is directly converted to bytesand passed as input to the API that supports byfe as input and provides bytfe as output,
then data corruption might occur.

If you are using the Bulk APIs for the MapReduce protector, then the following two modes for error handling and return codes
are available:

» Default mode: Starting with the Big Data Protector, version 6.6.4, the Bulk APIs in the MapReduce protector will return the
detailed error and return codes instead of Ofor failure and 1 for success. In addition, the MapReduce jobs involving Bulk APIs
will provide error codes instead of throwing exceptions.

Note: For more information about the return codes for Big Data Protector, version 9.2.0.0, refer to section Appendix: Return Codes.

« Backward compatibility mode: If you need to continue using the error handling capabilities provided with Big Data Protector,
version 6.6.3 or lower, that is Ofor failure and 1 for success, then you can set this mode.

3.4 Sample Code Usage

The MapReduce sample program, described in this section, is an example on how to use the Protegrity MapReduce protector
APIs. The sample program utilizes the following two Java classes:

* ProtectData.java — This main class calls the Mapper job.

« ProtectDataMapper.java — This Mapper class contains the logic to fetch the input data and store the protected content as
output.

3.4.1 Main Job Class — ProtectData.java
ProtectData.java

package com.protegrity.samples.mapreduce;

import org.apache._hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache._hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FilelnputFormat;
import org.apache.hadoop.mapreduce. lib. input.TextlnputFormat;
import org.apache._hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce. lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util._ToolRunner;

public class ProtectData extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception

{
//Create the Job
Job job = new Job(getConf(), "ProtectData');

& Confidential 20



Protegrity Big Data Protector Guide 9.2.0.0 Hadoop Application Protector

//Set the output key and value class
Job.setOutputkKeyClass(NullWritable.class);
Jjob.setOutputValueClass(Text.class);

//Set the output key and value class
Job.setMapOutputKeyClass(NullWritable.class);
Job.setMapOutputValueClass(Text.class);

//Set the Mapper class which will perform the protect job
Job.setMapperClass(ProtectDataMapper.class);

//Set number of reducer task
Jjob.setNumReduceTasks( 0 );

//Set the input and output Format class
job_setlnputFormatClass(TextlnputFormat.class);
Job.setOutputFormatClass(TextOutputFormat.class);

//Set the jar class
Jjob.setJarByClass(ProtectData.class);

//Store the input path and print the input path
Path input = new Path(args[0]);
System.out.printin(input.getName());

//Store the output path and print the output path
Path output = new Path(args[1]);
System.out.printin(output.getName());

//Add input and set output path
FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

//Call the job
return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String args[]) throws Exception
System.exit(ToolRunner.run(new Configuration(), new ProtectData(), args));
} )

3.4.2 Mapper Class — ProtectDataMapper.java
ProtectDataMapper.java

package com.protegrity.samples.mapreduce;

import java.io.lOException;

import java.util.StringTokenizer;

import org.apache.hadoop.io.NullWritable;

import org.apache_hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

//Need to import the ptyMapReduceProtector class to use the Protegrity MapReduce protector
import com.protegrity.hadoop.mapreduce.ptyMapReduceProtector;

//Create the Mapper class i.e. ProtectDataMapper which will extends the Mapper Class
public class ProtectDataMapper extends Mapper<Object, Text, NullWritable, Text> {

//Declare the member variable for the ptyMapReduceProtector class
private ptyMapReduceProtector mapReduceProtector;
//Declare the Array of Data Elements which will be required to do the protection/

unprotection
private final String[] data_element_names = { "TOK_NAME"™, "TOK_PHONE'"™, "TOK_CREDIT_CARD",

"TOK_AMOUNT™ };

//Initialize the mapreduce protector i.e ptyMapReduceProtector in the default constructor
public ProtectDataMapper() throws Exception {

// Create the new object for the class ptyMapReduceProtector

mapReduceProtector = new ptyMapReduceProtector();

// Open the session using the method " openSession('0™) ™

int openSessionStatus = mapReduceProtector.openSession(*'0");

s ] Confidential 21



Protegrity Big Data Protector Guide 9.2.0.0 Hadoop Application Protector

//0verride the map method to parse the text and process it line by line

//Split the inputs separated by delimiter ","™ in the line

//Apply the protect/unprotect operation

//Create the output text which will have protected/unprotected outputs separated by
delimiter ","

//Write the output text to the context

@Override

public void map(Object key, Text value, Context context) throws I0Exception,

InterruptedException
{

// Store the line in a variable strOnelLine
String strOneLine = value.toString();
// Split the inputs separated by delimiter "," in the line
StringTokenizer st = new StringTokenizer(strOneLine, ",'™);
// Create the iInstance of StringBuilder to store the output
StringBuilder sb = new StringBuilder();
// Store the no of inputs in a line
int noOfTokens = st.countTokens();
it (mapReduceProtector != null) {
//1terate through the string token and apply the protect/unprotect operation
for (int i = 0; st.hasMoreElements(); i++) {
String data = (String)st.nextElement();
if(i == 0) {
sb.append(new String(data));
} else {
//To protect data, call the function protect method with parameters data
element and input data in bytes
//mapReduceProtector.protect( <Data Element> , <Data in bytes> )
//0utput will be returned in bytes
//To unprotect data, call the function unprotect method with parameters
data element and input data in bytes
//mapReduceProtector.unprotect( <Data Element> , <Data in bytes> )
//0utput will be returned in bytes
byte[] bResult =
mapReduceProtector.protect(data_element_names[i-1],
data.trim().getBytes());
if (bResult != null) {
// Store the result in string and append it to the output sb
sb.append(new String(bResult));

else {
// If output will be null, then store the result as "cryptoError"™ and
append it to the output sb
sb.append(*'cryptoError');

}
iT(i < noOfTokens -1 ) {

// Append delimiter "," at the end of the processed result
sb.append(**,"™);

1}
// write the output text to context
context.write(NullWritable.get(), new Text(sb.toString()));
3

// call fTlushAudits() in the cleanup method of Mapper so that all Protector

// audit logs are flushed to Audit Store at the end of each Mapper task

@0override

public void cleanup(Mapper.Context context){
mapReduceProtector . flushAudits();

//clean up the session and objects

@Override

protected void finalize() throws Throwable {
//Close the session
int closeSessionStatus = mapReduceProtector.closeSession();
mapReduceProtector = null;
super.finalize();

3

¥

s ] Confidential 22



Protegrity Big Data Protector Guide 9.2.0.0 Hadoop Application Protector

3.5 Hive UDFs

For more information about the Hive User Defined Functions (UDFs), refer to Protegrity APIs, UDFs, and Commands Reference
Guide Release 9.2.0.0.

Note: If you are using Ranger or Sentry, then ensure that your policy provides create access permissions to the required UDFs.

3.6 Pig UDFs

Note: For more information about the Pig UDFs, refer to Protegrity APIs, UDFs, and Commands Reference Guide Release 9.2.0.0.

& Confidential 23



Protegrity Big Data Protector Guide 9.2.0.0 HBase

Chapter 4

HBase

4.1 Overview of the HBase Protector

4.2 HBase Protector Usage

4.3 Adding Data Elements and Column Qualifier Mappings to a New Table

4.4 Adding Data Elements and Column Qualifier Mappings to an Existing Table
4.5 Inserting Protected Data into a Protected Table

4.6 Retrieving Protected Data from a Table

4.7 HBase Commands

4.8 Ingesting Data Securely

4.9 Extracting Data Securely

HBase is a database, which provides random read and write access to tables, consisting of rows and columns, in real-time. HBase is
designed to run on commodity servers, to automatically scale as more servers are added, and is fault tolerant as data is divided across
servers in the cluster. HBase tables are partitioned into multiple regions. Each region stores a range of rows in the table. Regions
contain a datastore in memory and a persistent datastore (HFile). The Name node assigns multiple regions to a region server. The
Name node manages the cluster and the region servers store portions of the HBase tables and perform the work on the data.

4.1 Overview of the HBase Protector

The Protegrity HBase protector extends the functionality of the data storage framework and provides transparent data protection
and unprotection using coprocessors, which provide the functionality to run code directly on region servers. The Protegrity
coprocessor for HBase runs on the region servers and protects the data stored in the servers. All clients which work with HBase
are supported.

The data is transparently protected or unprotected, as required, utilizing the coprocessor framework.

4.2 HBase Protector Usage

The Protegrity HBase protector utilizes the get, put, and scan commands and calls the Protegrity coprocessor for the HBase
protector. The Protegrity coprocessor for the HBase protector locates the metadata associated with the requested column qualifier
and the current logged in user. If the data element is associated with the column qualifier and the current logged in user, then the
HBase protector processes the data in a row based on the data elements defined by the security policy deployed in the Big Data
Protector.

Warning:
The Protegrity HBase coprocessor only supports bytes converted from the string data type.

a Confidential 24



Protegrity Big Data Protector Guide 9.2.0.0 HBase

If any other data type is directly converted to bytesand inserted in an HBase table, which is configured with the Protegrity HBase
coprocessor, then data corruption might occur.

4.3 Adding Data Elements and Column Qualifier Mappings to a New Table

In an HBase table, every column family of a table stores metadata for that family, which contain the column qualifier and data
element mappings.

Users need to add metadata to the column families for defining mappings between the data element and column qualifier, when a

new HBase table is created.

The following command creates a new HBase table with one column family.

create "table”, { NAME => “"column_family_1", METADATA => {
"DATA_ELEMENT:credit_card®"=>"CC_NUMBER", "DATA_ELEMENT :name"=>"TOK_CUSTOMER_NAME" } }

Parameters

Table 4-1: Parameters to create a new HBase Table

Parameter Description

table Specifies the name of the table.

column_family 1 Specifies the name of the column family.

METADATA Specifies the data associated with the column family.

DATA ELEMENT Contains the column qualifier name. In the example, the column
qualifier names credit_card and name, correspond to data elements
CC NUMBER and TOK_CUSTOMER_NAME respectively.

4.4 Adding Data Elements and Column Qualifier Mappings to an Existing
Table

Users can add data elements and column qualifiers to an existing HBase table. Users need to alter the table to add metadata to the

column families for defining mappings between the data element and column qualifier.

The following command adds data elements and column qualifier mappings to a column in an existing HBase table.

alter "table®, { NAME => “"column_family_ 1", METADATA =>
{ "DATA ELEMENT:credit_card"=>"CC_NUMBER", "DATA ELEMENT:name"=>"TOK_CUSTOMER_NAME" } }

Parameters

Table 4-2: Parameters to add data elements in an existing HBase Table

Parameter Description

table Specifies the name of the table.

column_family 1 Specifies the name of the column family.

METADATA Specifies the data associated with the column family.

DATA ELEMENT Contains the column qualifier name. In the example, the column
qualifier names credit_card and name, correspond to data elements
CC NUMBER and TOK_CUSTOMER_NAME respectively.

a Confidential



Protegrity Big Data Protector Guide 9.2.0.0 HBase

4.5 Inserting Protected Data into a Protected Table

You can ingest protected data into a protected table in HBase using the BYPASS COPROCESSOR flag. If you set the
BYFASS COPROCESSOR flag while inserting data in the HBase table, then the Protegrity coprocessor for HBase is bypassed.

The following command bypasses the Protegrity coprocessor for HBase and ingests protected data into an HBase table.

put “table®, “"row_2", “"column_family:credit_card®, "3603144224586181", {
ATTRIBUTES => {"BYPASS_COPROCESSOR"=>"1"}}

Parameters

Table 4-3: Parameters to ingest protected data into an HBase Table

Parameter Description

table Specifies the name of the table.

column_family Specifies the name of the column family.

METADATA Specifies the data associated with the column family.

ATTRIBUTES Specifies additional parameters to consider when ingesting the
protected data. In the example, the flag to bypass the Protegrity
coprocessor for HBase is set.

4.6 Retrieving Protected Data from a Table

If you want to retrieve protected data from an HBase table, then you must set the BYPASS COPROCESSOR flag to retrieve the
data. This is required to retain the protected data as is because HBase protects and unprotects the data transparently.

The following command bypasses the Protegrity coprocessor for HBase and retrieves protected data from an HBase table.
scan “"table”, { ATTRIBUTES => {"BYPASS_COPROCESSOR"=>"1"}}
Parameters

Table 4-4: Parameters to retrieve protected data from an HBase Table

Parameter Description
table Specifies the name of the table.
ATTRIBUTES Specifies additional parameters to consider when ingesting the

protected data. In the example, the flag to bypass the Protegrity
coprocessor for HBase is set.

table: Name of the table.

ATTRIBUTES: Additional parameters to consider when ingesting the protected data. In the example, the flag to bypass the
Protegrity coprocessor for HBase is set.

& Confidential 26




Protegrity Big Data Protector Guide 9.2.0.0 HBase

4.7 HBase Commands

Hadoop provides shell commands to ingest, extract, and display the data in an HBase table.

Note: For more information about the commands supported by HBase, refer to Protegrity APIs, UDFs, and Commands Reference Guide
Release 9.2.0.0.

4.8 Ingesting Data Securely

To ingest data into HBase securely, use the putcommand.

Note: For more information about the put command, refer to the section putin Protegrity APIs, UDFs, and Commands Reference Guide
Release 9.2.0.0.

4.9 Extracting Data Securely

To extract data from HBase securely, use the gef command.

Note: For more information about the gef command, refer to section getin the Protegrity APIs, UDFs, and Commands Reference Guide
Release 9.2.0.0.

& Confidential 27



Protegrity Big Data Protector Guide 9.2.0.0 Impala

Chapter 5

Impala

5.1 Overview of the Impala Protector

5.2 Impala Protector Usage

5.3 Impala UDFs

5.4 Inserting Data from a File into a Table
5.5 Protecting Existing Data

5.6 Unprotecting the Protected Data

5.7 Retrieving Data from a Table

Impala is an MPP SQL query engine for querying the data stored in a cluster. It provides the flexibility of the SQL format and is
capable of running the queries on HDFS in HBase.

Note: This section is applicable for the CDP-PVC-Base and CDH native installer only.

This section provides information about the Impala protector, the UDFs provided, and the commands for protecting and unprotecting
data in an Impala table.

5.1 Overview of the Impala Protector

Impala is an MPP SQL query engine for querying the data stored in a cluster. The Protegrity Impala protector extends the
functionality of the Impala query engine and provides UDFs which protect or unprotect the data as it is stored or retrieved.

5.2 Impala Protector Usage

The Protegrity Impala protector provides UDFs for protecting data using encryption or tokenization, and unprotecting data using
decryption or detokenization.

Note: Ensure that the /ser/impala path exists in HDFS with the Impala supergroup permissions.
To verify the path, run the following command:

# hdfs dfs —Is /Zuser

5.2.1 Creating the /user/impala path in Impala with Supergroup Permissions

a Confidential 28



Protegrity Big Data Protector Guide 9.2.0.0 Impala

» To create the /user/impala path in Impala with Supergroup permissions:

If the /user/impala path does not exist or does not have supergroup permissions, then perform the following steps.

1. To create the /user/impala directory in HDFS, run the following command.

# sudo —u hdfs dfs —mkdir Zuser/impala

2. To assign Impala supergroup permissions to the /user/impala path, run the following command.

# sudo —u hdfs dfs —chown —R impala:supergroup Zuser/impala

5.3 Impala UDFs

Note: For more information about the Impala UDFs, refer to Protegrity APIs, UDFs, and Commands Reference Guide Release 9.2.0.0.

5.4 Inserting Data from a File into a Table

To insert data from a file into an Impala table, ensure that the required user permissions for the directory path in HDFS are
assigned for the Impala table.

5.4.1 Preparing the environment for the basic_sample.csv file

» o prepare the environment for the basic_sample.csvfile:

1. To assign permissions to the path where data from the basic_sample.csv file needs to be copied, run the following command:

sudo -u hdfs hdfs dfs -chown root:root /tmp/basic_sample/sample/
2. To copy the data from the basic_sample.csvfile into HDFS, run the following command:

sudo -u hdfs hdfs dfs -put basic_sample.csv /tmp/basic_sample/sample/

3. To verify the presence of the basic_sample.csvfile in the HDFS path, run the following command:

sudo -u hdfs hdfs dfs -Is /tmp/basic_sample/sample/

4. To assign permissions for Impala to the path where the basic_sample.csvfile is copied, run the following command:

sudo -u hdfs hdfs dfs -chown impala:supergroup /path/

5.4.2 Populating the table sample _table from the basic_sample _data.csv file

» To populate the table sample_table from the basic_sample_data.csv file:

8 Confidential 29



Protegrity Big Data Protector Guide 9.2.0.0

Impala

To populate the basic_sample table with the data fr

om the basic_sample_data.csvfile, run the following query:

create table sample_table(colnamel colnamel_format, colname2 colname2_format, colname3

colname3_format)

row format delimited fields terminated by *,";
LOAD DATA INPATH "/tmp/basic_sample/sample/® INTO TABLE sample_table;

where:

Table 5-1: Parameters to populate the table

Parameter

Description

sample_table

Is the name of the Impala table created to load the data from the
input CSV file from the required path

colnamel, colnameZ2, colname3

Specifies the name of the columns.

colnamel_format, colname2_format, colname3_format

Specifies the data types contained in the respective columns. The
data types can only be any one of the following types:

e STRING

e INT

* DOUBLE
e FLOAT

ATTRIBUTES

Specifies the additional parameters to consider when ingesting the
data

Note: In the example, the row format is delimited using the “,” character because the row format in the input file is comma separated.
If the input file is tab separated, then the the row format is delimited using ‘\t'.

5.5 Protecting Existing Data

To protect existing data, you must define the mapping between the columns and their respective data elements in the data security

policy.

The following commands ingest cleartext data from the
using Impala UDFs.

create table basic_sample_protected (col
colname3 colname3_format)

basic_sampletable to the basic_sample_protectedtable in protected form

namel colnamel_format, colname2 colname2_format,

insert into basic_sample_protected(colnamel, colname2, colname3)

select ID,pty_stringins(colnamel, dataEl

ementl),pty_stringins(colname2,

dataElement2),pty_stringins(colname3, dataElement3)

from basic_sample;

where:

Table 5-2: Parameters to ingest cleartext data using Impala UDFs

Parameter

Description

basic_sample_protected

Specifies the name of the table to store the protected data.

colnamel, colnameZ2, colname3

Specifies the name of the columns.

dataElementl, dataElement2, dataElement3

Specifies the data elements corresponding to the columns.

basic_sample

Specifies the name of the table containing the original data in cleartext
form.

Confidential 30



Protegrity Big Data Protector Guide 9.2.0.0 Impala

5.6 Unprotecting the Protected Data
To unprotect protected data, you must specify the following:

e The name of the table that contains the protected data
e The table that will store the unprotected data
e The columns and their respective data elements

Note: Ensure that you have the permissions to unprotect the data as required in the data security policy.

With the required permissions in place, execute the following queries to unprotect the protected data in a table and store the data
in cleartext form into a different table:

create table table_unprotected (colnamel colnamel_format, colname2 colname2_format, colname3
colname3_format)

insert into table_unprotected (colnamel, colname2, colname3) select
ID,pty_stringsel(colnamel, dataElementl),

pty_stringsel (colname2, dataElement2),pty_stringsel(colname3, dataElement3) from
table_protected;

where:

Table 5-3: Parameters to unprotect protected data

Parameter Description

table_unprotected Specifies the table to store the unprotected data.
colnamel, colname2, colname3 Specifies the name of the columns.

aataElementl, dataElement2, datakElement3 Specifies the data elements corresponding to the columns.
table_protected Specifies the name of the table containing protected data.

5.7 Retrieving Data from a Table
To retrieve data from a table, you must have access to the table.

To view the data contained in the table, execute the following query:

select * from table;

where:

Table 5-4: Parameters to view the data contained in a table

Parameter Description

table Specifies the name of the table.

& Confidential 31



Protegrity Big Data Protector Guide 9.2.0.0 Spark

Chapter 6

Spark

6.1 Overview of the Spark Protector
6.2 Spark Protector Usage

6.3 Spark Java

6.4 Spark SQL

6.5 Spark Scala

Spark is an execution engine that carries out batch processing of jobs in-memory and handles a wider range of computational
workloads. In addition to processing a batch of stored data, Spark is capable of manipulating data in real time.

Spark leverages the physical memory of the Hadoop system and utilizes Resilient Distributed Datasets (RDDs) to store the data
in-memory and lowers latency, if the data fits in the memory size. The data is saved on the hard drive only if required. As RDDs

are the basic units of abstraction and computation in Spark, you can use the protection and unprotection APIs, provided by the Spark
protector, when performing the transformation operations on an RDD.

If you need to use the Spark Protector API in a Spark Java job, then the users will have to implement the function interface as per the
Spark Java programming specifications and subsequently use it in the required transformation of an RDD to tokenize the data.

This section provides information about the Spark protector, the APIs provided, and the commands for protecting and unprotecting
data in a file by using the respective Spark APIs for protection or unprotection. In addition, it provides information about Spark SQL,
which is a module that adds relational data processing capabilities to the Spark APIs, and a sample program for Spark Scala.

Note:
This section considers Spark, version 1.5.x, or higher as reference.

6.1 Overview of the Spark Protector

The Protegrity Spark protector extends the functionality of the Spark engine and provides APIs that protect or unprotect the data
as it is stored or retrieved.

6.2 Spark Protector Usage

The Protegrity Spark protector provides APIs for protecting and reprotecting the data using encryption or tokenization, and
unprotecting data by using decryption or detokenization.

Note: Ensure that configure the Spark protector after installing the Big Data Protector.

8 Confidential 32



Protegrity Big Data Protector Guide 9.2.0.0 Spark

6.3 Spark Java

This section describes the Spark APIs (Java) available for protection and unprotection in the Big Data Protector to build secure
Big Data applications.

6.3.1 Spark Java APlIs

Note: For more information about the Spark Java APISs, refer to Protegrity APIs, UDFs, and Commands Reference Guide Release 9.2.0.0.
Warning:
The Protegrity Spark protector only supports bytes converted from the string data type.

If you directly convert any other data type to bytesand pass that as input to the API that supports byZe as input and provides byfe as an
output, then data corruption might occur.

6.3.2 Spark APIs and Supported Protection Methods

The following table lists the Spark APIs, the input and output data types, and the supported Protection Methods.

Note:
e Starting from the Version 7.1, Maintenance Release 1 (MR1), the DTP2 protection method is deprecated.
» For assistance in switching to a different protection method, contact Protegrity.

Table 6-1: Spark APlIs and Supported Protection Methods

Operation Input Output Protection Method Supported

Protect Byte Byte Tokenization, Encryption, No
Encyption, DTP2, CUSP

Protect Short Short Tokenization, No Encyption

Protect Short Byte Encryption, CUSP

Protect Int Int Tokenization, No Encyption

Protect Int Byte Encryption, CUSP

Protect Long Long Tokenization, No Encyption

Protect Long Byte Encryption, CUSP

Protect Float Float Tokenization, No Encyption

Protect Float Byte Encryption, CUSP

Protect Double Double Tokenization, No Encyption

Protect Double Byte Encryption, CUSP

Protect String String Tokenization, No Encyption,
DTP2

Protect String Byte Encryption, CUSP

Unprotect Byte Byte Tokenization, Encryption, No
Encyption, DTP2, CUSP

Unprotect Short Short Tokenization, NoEncyption

Unprotect Byte Short Encryption, CUSP

Unprotect Int Int Tokenization, No Encyption

& Confidential 33



Protegrity Big Data Protector Guide 9.2.0.0

Spark

Operation Input Output Protection Method Supported

Unprotect Byte Int Encryption, CUSP

Unprotect Long Long Tokenization, No Encyption

Unprotect Byte Long Encryption, CUSP

Unprotect Float Float Tokenization, No Encyption

Unprotect Byte Float Encryption, CUSP

Unprotect Double Double Tokenization, No Encyption

Unprotect Byte Double Encryption, CUSP

Unprotect String String Tokenization, No Encyption,

DTP2
Unprotect Byte String Encryption, CUSP
Reprotect Byte Byte Tokenization, Encryption, DTP2,
CUSP

Note: If a protected value
is generated using Byfeas
both /nputand Output, then
only Encryption/CUSP is
supported.

Reprotect Short Short Tokenization

Reprotect Int Int Tokenization

Reprotect Long Long Tokenization

Reprotect Float Float Tokenization

Reprotect Double Double Tokenization

Reprotect String String Tokenization, DTP2

6.3.3 Loading the Cleartext Data from a File to HDFS

You must first create a sample csv file that contains the cleartext data in comma separated value format. For example, create the

basic_sample_data.csvfile.

For more information on the sample data to be used for creating this csv file, refer to section Sample Data.

P To load the cleartext data from the basic_sample_data.csv file:

To load the cleartext data from the basic_sample_adata.csvfile to HDFS, run the following command.

hdfs dfs fs -put <Local_Filesystem Path>/basic_sample_data.csv <

Path_of Cleartext_data file>

where,

Parameters

Description

basic_sample_data.csv

Specifies the name of the file containing cleartext data

<Local _Fil esyst em Pat h>

Specifies the directory path on the local machine where the
basic_sample_data.csvfile is saved.

Confidential

34



Protegrity Big Data Protector Guide 9.2.0.0 Spark

Parameters Description

<Pat h_of _Cl eartext_data_fil e>|Specifies the HDFS directory path for the file with the cleartext data.

Note: Ensure that the user who is running the command has read and write access
to this location.

6.3.4 Protecting the Existing Data

To protect cleartext data, you must specify the name of the file, which contains the cleartext data and the name of the location that
contains the file which would store the protected data.

The following command reads the cleartext data from the basic_sample data.csvfile and stores it in the basic_sample_protected
directory in protected form using the Spark APIs.

-/spark-submit --master yarn --class com.protegrity.spark.ProtectData <PROTEGRITY_DIR>/
samples/spark/1ib/spark_protector_demo. jar

<Path_of Cleartext_data_ file>/basic_sample_data.csv

<Path_of Protected_data_file>/basic_sample_protected

Note: Ensure that the user performing the task has the permissions to protect the data, as required, in the data security policy.

Parameters Description
com.protegrity.spark.ProtectData Specifies the Spark protector class for protecting the data.
spark_protector_demo.jar Specifies the sample .jarfile utilizing the Spark protector API for protecting data

in the .csvfile. You must create this sample .jar file by compiling the scala class
files listed in section 9.5.1 Sample Code Usage for Spark (Scala)

<Pat h_of _Cl eartext _data_fil e>|Specifies the HDFS directory path for the file with cleartext data.

<Pat h_of _Prot ect ed_dat a_f i | e>| Specifies the HDFS directory path for the file with protected data.

basic_sample data Specifies the name of the file to read cleartext data.

6.3.5 Unprotecting the Protected Data

To unprotect the protected data, you must specify the name of the location that contains the file, which stores the protected data
and the name of the location that contains the file to store the unprotected data.

To retrieve the protected data from the basic_sample_protected directory and save it in the basic_sample_unprotected directory in
unprotected form, use the following command.
-/spark-submit --master yarn --class com.protegrity.spark.UnProtectData <PROTEGRITY_DIR>/
samples/spark/l1ib/spark_protector_demo.jar

<Path_of Protected_data file>/basic_sample protected data
<Path_of_Unprotected_data_ file>/basic_sample_unprotected_data

Note: Ensure that the user performing the task has the permissions to unprotect the data, as required, in the data security policy.

where,

a Confidential 35



Protegrity Big Data Protector Guide 9.2.0.0 Spark

Parameter Description
com.protegrity.spark. UnProtectData Specifies the Spark protector class for unprotecting the protected data.
spark_protector_demo.jar Specifies the sample .jarfile utilizing the Spark protector API for

unprotecting the protected data in the .csvfile. You must create this
sample jar file by compiling the scala class files listed in section 9.5.1
Sample Code Usage for Spark (Scala).

<Pat h_of _Protected_data_fil e>/ Specifies the HDFS directory path for the file with protected data.
basi c_sanpl e_protected data

<Pat h_of _Unprotected_data_fil e>/ Specifies the HDFS directory path for the file to store the unprotected
basi c_sanpl e_unprot ect ed_dat a data.

6.3.6 Retrieving the Unprotected Data from a File
To retrieve data from a file containing protected data, the user needs to have access to the file.

To view the unprotected data contained in the file, use the following command.

hadoop fs -cat <Path_of Unprotected_data_ file> /basic_sample_unprotected_data/part*

where,
Parameter Description
<Pat h_of _Unprotected_data fil e>/ Specifies the HDFS directory path for the file that contains the
basi c_sanpl e_unprot ect ed_dat a unprotected data.
6.4 Spark SQL

The Spark SQL module provides relational data processing capabilities to Spark. The module allows you to run SQL queries
with Spark programs. It contains DataFrames, which is an RDD with an associated schema, that provide support for processing
structured data in Hive tables.

Spark SQL enables structured data processing and programming of RDDs providing relational and procedural processing through
a DataFrame API that integrates with Spark.

6.4.1 DataFrames

A DataFrame is a distributed collection of data, such as RDDs, with a corresponding schema. DataFrames can be created from a
wide array of sources, such as Hive tables, external databases, structured data files, or existing RDDs.

It can act as a distributed SQL query engine and is equivalent to a table in a relational database that can be manipulated, similar to
RDDs. To optimize execution, DataFrames support relational operations and track their schema.

6.4.2 SQLContext

A SQLContext is a class that is used to initialize Spark SQL. It enables applications to run SQL queries, while running SQL
functions, and provides the result as a DataFrame.

HiveContext extends the functionality of SQLContext and provides capabilities to use Hive UDFs, create Hive queries, and
access and modify the data in Hive tables.

a Confidential 36



Protegrity Big Data Protector Guide 9.2.0.0 Spark

The Spark SQL CL1 is used to run the Hive metastore service in local mode and execute queries. When we run Spark SQL
(spark-sql), which is client for running queries in Spark, it creates a SparkContext defined as sc and HiveContext defined as
sqlContext.

6.4.3 Spark SQL UDFs

Note: For more information about the Spark SQL User Defined Functions (UDFs), refer to Protegrity APIs, UDFs, and Commands
Reference Guide Release 9.2.0.0.

Note: The example code snippets provided in this section utilize SQL queries to invoke the UDFs, after they are registered, using the
sql.Context.sql() method.

6.4.4 Inserting Data from a File into a Table

The following commands create a class named Person with columns to store data.
scala> import sqlContext.implicits._

scala> case class Person(colnamel: colnamel format, colname2: colname2_format, colname3:
colname3_format)

The following command reads the local sample file basic_sample_data.csv.

scala> val input = sc.textFile(""file:///opt/protegrity/samples/datasbasic_sample_data.csv')

The following command creates a DataFrame by mapping the RDD to the RDD [Person] object.

scala> val df = input.map(x => x.split(*",")).map(p => Person(p(0).tolnt, p(1), p(2),
P(3)))-toDFQ)

The following command registers the temporary table sample_table.

scala> df.registerTempTable("'sample_table')

The following commands save the table sample_table to a Parquet file.

scala> import org.apache.spark.sql .SaveMode
scala> df.write.mode(SaveMode. Ignore) .save(''sample_table.parquet™)

where:

Table 6-2: Parameters to insert data from a File into a Table

Parameter Description

sample_table Specifies the name of the table created to load the data from the input
CSV file from the required path.

colnamel, colname2, colname3 Specifies the name of the columns.

colnamel_format, colname2_format, colname3_format Specifies the data types contained in the respective columns.

6.4.5 Protecting Existing Data

8 Confidential 37



Protegrity Big Data Protector Guide 9.2.0.0 Spark

This following command creates a Spark SQL table with the protected data.

“SELECT 1D, ™ +
"ptyProtectStr(colnamel, “dataElementl®) as colnamel,™ +
"ptyProtectStr(colnamel, "dataElement2®) as colname2," +
"ptyProtectStr(colname3, "dataElement3") as colname3," +
"FROM basic_sample"

) -registerTempTable(*'basic_sample_protected')

Note: Ensure that the user performing the task has the permissions to protect the data, as required, in the data security policy.

where:

Table 6-3: Parameters to protect the data

Parameter Description

basic_sample_protected Specifies the name of the table to store the protected data.

colnamel, colname2, colname3 Specifies the name of the columns.

dataElementl, dataElement?2, datakElement3 Specifies the data elements corresponding to the columns.

basic_sample Specifies the name of the table containing the original data in cleartext
form.

basic_sample_protected Specifies the name of the table to store the protected data.

6.4.6 Unprotecting and Viewing the Protected Data

To unprotect and view the protected data, you need to specify the name of the table which contains the protected data, and the
columns and their respective data elements.

Ensure that the user performing the task has permissions to unprotect the data as required in the data security policy.

The following commands unprotect the protected data from the table table_protected.

scala> drop table if exists table_unprotected;

scala> create table table_unprotected (colnamel colnamel_ format, colname2 colname2_ format,

colname3 colname3_format) distributed randomly;

scala> sqlContext.sqgl(

“SELECT ID," +

"ptyUnprotectStr(colnamel, "dataElementl®) as colnamel," +
"ptyUnprotectStr(colname2, “dataElement2®) as colname2," +
"ptyUnprotectStr(colname3, "datakElement3") as colname3," +

"FROM table_protected"
) -show(False)

Parameters

pt yUnpr ot ect St r: The Protegrity Spark SQL UDF to unprotect String data.

col nanel, col nane2, col nanme3: Name of the columns.

dat aEl enent 1, dat aEl enent 2, dat aEl enent 3: The data elements corresponding to the columns.

t abl e_pr ot ect ed: Table containing protected data.

6.4.7 Retrieving Data from a Table

a Confidential 38



Protegrity Big Data Protector Guide 9.2.0.0 Spark

To retrieve data from a table, the user needs to have access to the table.

The following command displays the data contained in the table.

scala> sqlContext.sql (""SELECT * table'™).show()

Parameters

t abl e: Name of the table.

6.4.8 Calling Spark SQL UDFs from Domain Specific Language (DSL)

You can utilize the functions of the Domain-Specific Langugage (DSL) and call Spark SQL UDFs to protect or unprotect data
from the Dataframe APIs. The following sample snippet describes how to call the Spark SQL UDFs from a DSL.
Calling Spark SQL UDFs from Domain Specific Language (DSL)

package com.protegrity.spark.dsl

import com.protegrity.spark.PtySparkProtectorException
import org.apache.spark.sqgl.{Column, DataFrame, UserDefinedFunction}

/**
* DSL APl for applying protection on DataFrames implicitly.
*
* e_g
* import sqlContext.implicits._
* import com.protegrity.spark.dsl._PtySparkDSL._
* val df = sc.parallelize(List("hello”™, "world™)).toDFQ
* df.protect(*"_1", "AlphaNum™)
* -withColumnRenamed(**_1", "protected')
* -show(Q)
*/

object PtySparkDSL {
implicit class PtySparkDSL(dataFrame: DataFrame) {
import org.apache.spark.sql.functions._

private def applyUDFOnColumns(colname: String,
dataElement: String,
func: UserDefinedFunction): Seq[Column] = {
dataFrame.schema.map { field =>
val name = field.name
if (name.equals(colname)) {
func(col(colname), lit(dataElement)).as(colname)

} else {

column(name)

}
}

private def applyUDFOnColumns(colname: String, oldDataElement: String, newDataElement:
String, func: UserDefinedFunction): Seq[Column] = {
dataFrame.schema.map { field =>
val name = field.name
it (name.equals(colname)) {
func(col (colname), lit(oldDataElement), lit(newDataElement)).as(colname)

} else {

column(name)

}
}

/**
* Returns data type of input field from DataFrame
* @param colname
* @return data type of the column

a Confidential 39



Protegrity Big Data Protector Guide 9.2.0.0 Spark

*
/
private def getFieldType(colname: String): String = {
try {
dataFrame.schema(colname) .dataType . typeName
} catch {

case e: IllegalArgumentException =>
throw new PtySparkProtectorException(e.getMessage)

}
}

def protect(colname: String, dataElement: String): DataFrame = {

val dataType = getFieldType(colname)

val function = dataType match {
case "'short" => udf(com.protegrity.spark.udf._ptyProtectShort )
case "integer' => udf(com.protegrity.spark.udf.ptyProtectint )
case "long"™ => udf(com.protegrity.spark.udf.ptyProtectLong )
case "float" => udf(com.protegrity.spark.udf._ptyProtectFloat )
case "double™ => udf(com.protegrity.spark.udf.ptyProtectDouble )
case "'‘decimal(38,18)" =>

udf(com.protegrity.spark.udf.ptyProtectDecimal )

case "'string" => udf(com.protegrity.spark.udf.ptyProtectStr )
case "'date" => udf(com.protegrity.spark.udf.ptyProtectDate )
case "‘timestamp™ => udf(com.protegrity.spark.udf._ptyProtectDateTime _)

case _ =>
throw new PtySparkProtectorException(
"Error!! DSL APl invoked on unsupported column type - ' + dataType)

val columns = applyUDFOnColumns(colname, dataElement, function)
dataFrame.select(columns: _*)

}

def protectUnicode(colname: String, dataElement: String): DataFrame = {
val function = udf(com.protegrity.spark.udf.ptyProtectUnicode )
val columns = applyUDFOnColumns(colname, dataElement, function)
dataFrame.select(columns: _*)

}

def unprotect(colname: String, dataElement: String): DataFrame = {
val dataType = getFieldType(colname)
val function = dataType match {
case "'short" => udf(com.protegrity.spark.udf.ptyUnprotectShort )
case "integer' => udf(com.protegrity.spark.udf.ptyUnprotectint )
case "long"™ => udf(com.protegrity.spark.udf.ptyUnprotectLong _)
case "float" => udf(com.protegrity.spark.udf.ptyUnprotectFloat )
case "'double™ => udf(com.protegrity.spark.udf.ptyUnprotectDouble )
case "'decimal (38,18)" =>
udf(com.protegrity.spark.udf.ptyUnprotectDecimal _)
case '"'string" => udf(com.protegrity.spark.udf.ptyUnprotectStr )
case "'date" => udf(com.protegrity.spark.udf.ptyUnprotectDate )
case "'timestamp" =>
udf(com.protegrity.spark.udf.ptyUnprotectDateTime _)

case _ =>
throw new PtySparkProtectorException(
"Error!! DSL APl invoked on unsupported column type - ' + dataType)

val columns = applyUDFOnColumns(colname, dataElement, function)
dataFrame.select(columns: _*)

}

def unprotectUnicode(colname: String, dataElement: String): DataFrame = {
val function = udf(com.protegrity.spark.udf.ptyUnprotectUnicode )
val columns = applyUDFOnColumns(colname, dataElement, function)
dataFrame.select(columns: _*)

}

def reprotect(colname: String, oldDataElement: String, newDataElement: String): DataFrame
val dataType = getFieldType(colname)

val function dataType match {
case "'short" => udf(com.protegrity.spark.udf._ptyReprotectShort )
case "integer' => udf(com.protegrity.spark.udf.ptyReprotectint )
case "long" => udf(com.protegrity.spark.udf.ptyReprotectLong )
case "float" => udf(com.protegrity.spark.udf.ptyReprotectFloat )

s ] Confidential 40



Protegrity Big Data Protector Guide 9.2.0.0 Spark

case "double™ => udf(com.protegrity.spark.udf.ptyReprotectDouble )
case "'decimal (38,18)" =>
udf(com.protegrity.spark.udf.ptyReprotectDecimal _)
case '"'string" => udf(com.protegrity.spark.udf.ptyReprotectStr )
case ''date" =>
udf(com.protegrity.spark._udf.ptyReprotectDate )
case "‘timestamp™ =>
udf(com.protegrity.spark.udf.ptyReprotectDateTime )

case _ =>
throw new PtySparkProtectorException(
"Error!! DSL APl invoked on unsupported column type - ' + dataType)

val columns = applyUDFOnColumns(colname, oldDataElement, newDataElement, function)
dataFrame.select(columns: _*)

}

def reprotectUnicode(colname: String, oldDataElement: String, newDataElement: String):
DataFrame = {
val function = udf(com.protegrity.spark.udf.ptyReprotectUnicode _)
val columns = applyUDFOnColumns(colname, oldDataElement, newDataElement, function)
dataFrame.select(columns: _*)

}
}
}

6.5 Spark Scala

The Protegrity Spark protector (Java) can be used with Scala to protect and reprotect the data by using encryption or tokenization,
and unprotect the data by using decryption or detokenization.

Note: In this Big Data Protector release, a sample code snippet for Spark Scala is provided.

6.5.1 Sample Code Usage for Spark (Scala)

The Spark protector sample program, described in this section, is an example on how to use the Protegrity Spark protector APIs
with Scala.

The sample program utilizes the following three Scala classes for protecting and unprotecting data:

* ProtectData.scala — This main class creates the Spark context object and calls the Datal oader class for reading cleartext
data.

« UnProtectData.scala - This main class creates the Spark Context object and calls the Datal oader class for reading protected
data.

« Dataloader.scala - This loader class fetches the input from the input path, calls the ProtectFunctionto protect the data,
and stores the protected data as output in the output path. In addition, it fetches the input from the protected path, calls the
UnProtectFunction to unprotect the data, and stores the cleartext content as output.

The following functions perform protection for every new line in the input or unprotection for every new line in the output.

e ProtectFunction - This class calls the Spark protector for every new line specified in the input to protect data.
» UnProtectFunction - This class calls the Spark protector for every new line specified in the input to unprotect data.
6.5.1.1 Main Job Class for Protect Operation — ProtectData.scala
ProtectData.scala
package com.protegrity.samples.spark.scala

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

8 Confidential 11



Protegrity Big Data Protector Guide 9.2.0.0

object ProtectData {
def main(args: Array[String]) {
// create a SparkContext object, which tells Spark how to access a cluster.
val sparkContext = new SparkContext(new SparkConf())
// create the new object for class Dataloader
val protector = new Dataloader(sparkContext)

Spark

// Call writeProtectedData method which read clear data from input Path i.e (args[0]) and

write data in output path after protect operation
protector.writeProtectedData(args(0), args(1), ",'™)
¥
¥

6.5.1.2 Main Job Class for Unprotect Operation — UnProtectData.scala

UnProtectData.scala

package com.protegrity.samples.spark.scala

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

object UnProtectData {
def main(args: Array[String]) {
val sparkContext = new SparkContext(new SparkConf())
val protector = new Dataloader(sparkContext)
protector .unprotectData(args(0), args(l), ",")
by
3

6.5.1.3 Utility to call Protect or Unprotect Function — Datal.oader.scala

s ]

Dataloader.scala

package com.protegrity.samples.spark.scala

import org.apache.log4j.Logger
import org.apache.spark.SparkContext

object Dataloader {
private val logger = Logger.getlLogger(classOf[DatalLoader])

by

/**

* A Data loader utility for reading & writing protected and un-protected data
*/

class DatalLoader(private var sparkContext: SparkContext) {

private var data_element_names: Array[String] = Array("'TOK_NAME"™, "TOK_PHONE",
"TOK_CREDIT_CARD™, "TOK_AMOUNT')

private var appid: String = sparkContext.getConf.getAppld
/**

* Writes protected data to the output path delimited by the input delimiter

*

* @param inputPath - path of the input employee info Ffile

* @param outputPath - path where the output should be saved

* @param delim - denotes the delimiter between the fields in the file
*/

def writeProtectedData(inputPath: String, outputPath: String, delim: String) {
// read lines from the input path & create RDD
val rdd = sparkContext.textFile(inputPath)
//import ProtectFunction

import com._protegrity.samples.spark.scala.ProtectFunction._
//call ProtectFunction on rdd

rdd.ProtectFunction(delim, appid, data_element_names, outputPath)

}

/**
* Reads protected data from the input path delimited by the input delimiter

* @param protectedlnputPath - path of the protected employee data

Confidential

42



Protegrity Big Data Protector Guide 9.2.0.0 Spark

* @param unprotectedOutputPath - output path where unprotected data should be stored.
* @param delim
*/

def unprotectData(protectedlInputPath: String, unprotectedOutputPath: String, delim: String)
{
// read lines from the protectedlnputPath & create RDD
val protectedRdd = sparkContext.textFile(protectedlnputPath)
//import UnProtectFunction
import com.protegrity.samples.spark.scala.UnProtectFunction._
//call UnprotectFunction on rdd
protectedRdd.UnprotectFunction(delim, appid, data_element_names, unprotectedOutputPath)

}

6.5.1.4 ProtectFunction.scala

s ]

ProtectFunction.scala

package com.protegrity.samples.spark.scala

import java.util _ArraylList

import org.apache.spark.rdd.RDD

import com.protegrity.spark.Protector

import com.protegrity.spark.PtySparkProtector

object ProtectFunction {
/*Defining this class as implicit,so that we can add new functionality to an RDD on the Ffly.
implicits are lexically bounded i.e If we import this class, then only we can use it"s
functions otherwise not*/
implicit class Protect(rdd: RDD[String]) {
def ProtectFunction(delim: String, appid: String, dataElement: Array[String],
protectoutputpath: String) =

val protectedRDD = rdd.map { line =>
// splits the iInput seperated by delimiter in the line
val splits = line.split(delim)
// store first split in protectedString as we are not going to protect first split.
var protectedString = splits(0)
// Initialize iInput size
val input = Array.ofDim[String](splits.length)
// Initialize output size
val output = Array.ofDim[String](splits.length)
// Initialize errorList
val errorList = new ArrayList[Integer](
// create the new object for class ptySparkProtector
var protector: Protector = new PtySparkProtector(appid)
// lterate through the splits and call protect operation
for (i <- 1 until splits_length) {
input(i) = splits(i)
// To protect data, call protect method with parameter dataElement, errorList,
input array and output array.output will be stored in output[]
protector .protect(dataElement(i - 1), errorList, input, output)
//Apppend output with protectedString
protectedString += delim + output(i)

protectedString
}

// Save protectedRDD into output path
protectedRDD.saveAsTextFile(protectoutputpath)

Confidential 43



Protegrity Big Data Protector Guide 9.2.0.0

Spark

6.5.1.5 UnprotectFunction.scala

UnprotectFunction.scala

package com.protegrity.samples.spark.scala

import java.util _ArraylList

import org.apache.spark.rdd.RDD

import com.protegrity.spark.Protector

import com.protegrity.spark.PtySparkProtector

object UnProtectFunction {
/*Defining this class as implicit,so that we can add new functionality to an RDD on the fly.
implicits are lexically bounded i.e If we import this class, then only we can use it"s

functions

otherwise not*/

implicit class Unprotect(protectedRDD: RDD[String]) {
def UnprotectFunction(delim: String, appid: String, dataElement: Array[String],
unprotectoutputpath: String) =

val unprotectedRDD = protectedRDD.map { line =>

errorList,

// splits the input seperated by delimiter in the line
val splits = line.split(delim)
// store first split in unprotectedString
var unprotectedString = splits(0)
// Initialize input size
val input = Array.ofDim[String](splits.length)
// Initialize output size
val output = Array.ofDim[String](splits.length)
// Initialize errorList
val errorList = new ArrayList[Integer](
// create the object for class ptySparkProtector
var protector: Protector = new PtySparkProtector(appid)
// lterate through the splits and call unprotect operation
for (i <- 1 until splits._length) {
input(i) = splits(i)
// To unprotect data, call unprotect method with parameter dataElement,

input array and output array.output will be stored in output[]
protector .unprotect(dataElement(i - 1), errorList, input, output)
//Apppend output with protectedString
unprotectedString += delim + output(i)

unprotectedString

// Save unprotectedRDD into output path
unprotectedRDD. saveAsTextFi le(unprotectoutputpath)

Confidential

44



Protegrity Big Data Protector Guide 9.2.0.0 Appendix: Return Codes

Chapter 7

Appendix: Return Codes

If you are using MapReduce, Hive, Pig, HBase, or Spark, and any failures occur, then the protector throws an exception. The exception
consists of an error code and error message. The following table lists all possible error codes and error descriptions.

The following table lists all possible return codes provided to the Core log files.

Table 7-1: Core Log Return Codes

Code Error Error Description

0 NONE

1 USER_NOT_FOUND The user name could not be found in the policy.

2 DATA_ELEMENT_NOT_FOUND The data element could not be found in the
policy.

3 PERMISSION_DENIED The user does not have the required permissions
to perform the requested operation.

4 TIME_PERMISSION_DENIED The user does not have the appropriate
permissions to perform the requested operation
at this point in time.

5 INTEGRITY_CHECK_FAILED Integrity check failed.

6 PROTECT_SUCCESS The operation to protect the data was successful.

7 PROTECT_FAILED The operation to protect the data failed.

8 UNPROTECT_SUCCESS The operation to unprotect the data was
successful.

9 UNPROTECT_FAILED The operation to unprotect the data failed.

10 OK_ACCESS The user has the required permissions to
perform the requested operation. This return
code ensures a verification and no data is
protected or unprotected.

11 INACTIVE_KEYID_USED The operation to unprotect the data was
successful using an inactive Key ID.

12 INVALID_PARAM The input is null or not within allowed limits.

13 INTERNAL_ERROR An internal error occurring in a function call
after the Provider is started.

14 LOAD_KEY_FAILED Failed to load the data encryption key.

17 INIT_FAILED The PEP server failed to initialize, which is a
fatal error.

20 OUT_OF _MEMORY Failed to allocate memory.

21 BUFFER_TOO_SMALL The input or output buffer is very small.

22 INPUT_TOO_SHORT The data is too short to be protected or
unprotected.

23 INPUT_TOO_LONG The data is too long to be protected or
unprotected.

a Confidential 45



Protegrity Big Data Protector Guide 9.2.0.0

Appendix: Return Codes

Code Error Error Description

25 USERNAME_TOO_LONG The user name is longer than the maximum
supported length of the user name that can be
used for protect or unprotect operations.

26 UNSUPPORTED The algorithm or action for the specific data
element is unsupported.

27 APPLICATION_AUTHORIZED The application is authorized.

28 APPLICATION_NOT_AUTHORIZED The application is not authorized.

31 EMPTY_POLICY The policy is empty.

32 DELETE_SUCCESS The operation to delete the data was successful.

33 DELETE_FAILED The operation to delete the data failed.

34 CREATE_SUCCESS The operation to create or add the data was
successful.

35 CREATE_FAILED The operation to create or add the data failed.

36 MNGPROT_SUCCESS The management of the protection operation
was successful.

37 MNGPROT_FAILED The management of the protection operation
failed.

40 LICENSE_EXPIRED The license is not valid or the current date is
beyond the license expiration date.

41 METHOD_RESTRICTED The use of the Protection method is restricted by
license.

42 LICENSE_INVALID The license is invalid or the time is prior to the
start of the license tenure.

44 INVALID_FORMAT The content of the input data is invalid.

46 INVALID_POLICY It is used for a z/OS Query regarding the default
data element when the policy name is not found.

49 UNSUPPORTED_ENCODING The input encoding for the specific data element
is not supported.

50 REPROTECT_SUCCESS The data reprotection was successful.

51 LOG_UNREACHABLE The logs cannot be sent because the log

framework is not accessible.

The following table lists all possible result codes provided as a result of operations performed on the Core.

Table 7-2: Core Result Codes

Code Error Error Description

1 SUCCESS The operation was successful.

0 FAILED The operation failed.

-1 INVALID_PARAMETER The parameter is invalid.

-2 EOF The end of file was reached.

-3 BUSY The operation is already in progress or the PEP
server is busy with some other operation.

-4 TIMEOUT The time-out threshold was reached as the PEP
server was waiting for a response.

-5 ALREADY_EXISTS The object, such as file, already exists.

-6 ACCESS_DENIED The permission to access the object was denied.

-7 PARSE_ERROR The error occurred when the contents were
parsed.

-8 NOT_FOUND The search operation was not successful.

Confidential

46



Protegrity Big Data Protector Guide 9.2.0.0

Appendix: Return Codes

Code Error Error Description

-9 NOT_SUPPORTED The operation is not supported.

-10 CONNECTION_REFUSED The connection was refused.

-11 DISCONNECTED The connection was terminated.

-12 UNREACHABLE The Internet link is down or the host is not
reachable.

-13 ADDRESS_IN_USE The IP Adddress or port is already utilized.

-14 OUT_OF_MEMORY The operation to allocate memory failed.

-15 CRC_ERROR The CRC check failed.

-16 BUFFER_TOO_SMALL The buffer size is very small.

-17 BAD_REQUEST The message received was not in a standard
format.

-18 INVALID_STRING_LENGTH The input string is very long.

-19 INVALID_TYPE The incorrect type of <NEED INPUTS> was
used.

-20 READONLY_OBJECT The object is set with read-only access.

-21 SERVICE_FAILED The service failed.

-22 ALREADY_CONNECTED The Administrator is already connected to the
Server.

-23 INVALID_KEY The key is invalid.

-24 INTEGRITY_ERROR The integrity check failed.

-25 LOGIN_FAILED The attempt to login failed.

-26 NOT_AVAILABLE The object is not available.

-27 NOT_EXIST The object does not exist.

-28 SET_FAILED The Set operation failed.

-29 GET_FAILED The Get operation failed.

-30 READ_FAILED The Read operation failed.

-31 WRITE_FAILED The Write operation failed.

-33 REWRITE_FAILED The Rewrite operation failed.

-34 DELETE_FAILED The Delete operation failed.

-35 UPDATE_FAILED The Update operation failed.

-36 SIGN_FAILED The Sign operation failed.

-37 VERIFY_FAILED The Verification failed.

-38 ENCRYPT_FAILED The Encrypt operation failed.

-39 DECRYPT_FAILED The Decrypt operation failed.

-40 REENCRYPT_FAILED The Reencrypt operation failed.

-41 EXPIRED The object has expired.

-42 REVOKED The object has been revoked.

-43 INVALID_FORMAT The format is invalid.

-44 HASH_FAILED The Hash operation failed.

-45 NOT_DEFINED The property or setting is not defined.

-46 NOT_INITIALIZED The service requested or function is performed
on an object that is not initialized.

-47 POLICY_LOCKED The Policy is locked.

-48 THROW_EXCEPTION The error message is used to convey that an

exception should be thrown during decryption.

Confidential

47



Protegrity Big Data Protector Guide 9.2.0.0

Appendix: Return Codes

Code Error Error Description

-49 USER_AUTHENTICATION_FAILED The Authentication operation failed.

-54 INVALID_CARD_TYPE The credit card number provided does not
confirm to the required credit card format.

-55 LICENSE_AUDITONLY The License provided is for the audit
functionality and only No Encryption data
elements are allowed.

-56 NO_VALID_CIPHERS No valid ciphers were found.

-57 NO_VALID_PROTOCOLS No valid protocols were found.

-201 CRYPT_KEY_DATA_ILLEGAL The key data specified is invalid.

-202 CRYPT_INTEGRITY_ERROR The integrity check for the data failed.

-203 CRYPT_DATA_LEN_ILLEGAL The data length specified is invalid.

-204 CRYPT_LOGIN_FAILURE The Crypto login failed.

-205 CRYPT_CONTEXT_IN_USE An attempt to close a key being used is made.

-206 CRYPT_NO_TOKEN The hardware token is available.

-207 CRYPT_OBJECT_EXISTS The object to be created already exists.

-208 CRYPT_OBJECT_MISSING A request for a non-existing object is made.

-221 X509_SET_DATA The operation to set data in the object failed.

-222 X509_GET_DATA The operation to get data from the object failed.

-223 X509_SIGN_OBJECT The operation to sign the object failed.

-224 X509 VERIFY_OBJECT The verification operation for the object failed.

-231 SSL_CERT_EXPIRED The certificate has expired.

-232 SSL_CERT_REVOKED The certificate has been revoked.

-233 SSL_CERT_UNKNOWN The Trusted certificate was not found.

-234 SSL_CERT_VERIFY_FAILED The certificate cound not be verified.

-235 SSL_FAILED A general SSL error occurs.

-241 KEY_ID_FORMAT_ERROR The format on the Key ID is invalid.

-242 KEY_CLASS FORMAT_ERROR The format on the KeyClass is invalid.

-243 KEY_EXPIRED The key expired.

-250 FIPS_MODE_FAILED The FIPS mode failed.

Confidential

48



Protegrity Big Data Protector Guide 9.2.0.0 Appendix: Migrating Tokenized Unicode Data from and to a Teradata Database

Appendix
A

Appendix: Migrating Tokenized Unicode Data from and to a Teradata
Database

8.1 Migrating Tokenized Unicode Data from a Teradata Database
8.2 Migrating Tokenized Unicode Data to a Teradata Database

This section describes the procedures for migrating tokenized Unicode data from and to a Teradata database.

Note: This section is only applicable for Legacy Unicode and Base64 Unicode data element.
Note: This section considers the Teradata database for reference.

Note: In addition to the Teradata database, the Big Data Protector works with other databases, such as Netezza, Greenplum, and so on.

8.1 Migrating Tokenized Unicode Data from a Teradata Database

This section describes the task to unprotect the tokenized Unicode data in Hive, Impala, or Spark, which was tokenized in the
Teradata database using the Protegrity Database Protector and then migrated to Hive, Impala, MapReduce, or Spark.

Note:

Ensure that the data elements used in the data security policy, deployed on the Teradata Database Protector and Big Data Protector
machines are uniform.

8.1.1 Migrating Tokenized Unicode data from Teradata database to Hive or Impala and
unprotecting it using Hive or Impala protector

» To migrate Tokenized Unicode data from Teradata database to Hive or Impala and unprotect it using Hive or Impala
protector:

a Confidential 49



Protegrity Big Data Protector Guide 9.2.0.0 Appendix: Migrating Tokenized Unicode Data from and to a Teradata Database

Tokenize the Unicode data in the Teradata database using Protegrity Database Protector.

Migrate the tokenized Unicode data from the Teradata database to Hive or Impala.

To unprotect the tokenized Unicode data on Hive or Impala, ensure that the following UDFs are used, as required:
» Hive: ptyUnprotectUnicode()

e Impala: pty UnicodeStringSel()

8.1.2 Migrating Tokenized Unicode data from a Teradata database to Hadoop and
Unprotecting it using MapReduce or Spark protector

» o migrate Tokenized Unicode data from a Teradata database to Hadoop and unprotect it using MapReduce or Spark
protector:

Migrate the tokenized Unicode data to the Hadoop ecosystem using any data migration utilities.
2. To unprotect the tokenized Unicode data using MapReduce or Spark, ensure that the following APIs are used, as required:
» MapReduce: public byte[] unprotect(String dataElement, byte[] data)
» Spark: void unprotect(String dataElement, List<Integer> errorindex, byte[][] input, byte[][] output)
Convert the protected tokens to bytes using UTF-8 encoding.
Send the data as input to the Unprotect API in the MapReduce or Spark protector, as required.
Convert the unprotected output in bytes to String using UTF-16LE encoding.
The string data will display the data in cleartext format.

The following sample code snippet describes how to unprotect the Tokenized Unicode data, that is migrated from a Teradata
database to Hadoop, using the MapReduce or Spark protector.

private Protector protector = null;

String[] unprotectinput= new String[SIZE] ;

byte[1[1 inputValueByte = new byte [unprotectinput.length][];

StringBuilder unprotectedString = new StringBuilder();

int x=0;

for (x=0; x< unprotectinput.length; x++)

inputValueByte[x]= unprotectinput[x].getBytes(StandardCharsets.UTF _8); // Point a
implementation

protector.unprotect(DATAELEMENT_NAME, errorindexList, inputValueByte,
outputValueByte); // Point b implementation

unprotectedString.apprend(new String(outputValueByte[]j],StandardCharsets.UTF_16LE))//
Point c implementation

8.2 Migrating Tokenized Unicode Data to a Teradata Database

This section describes the task to protect Unicode data in Hive, Impala, MapReduce, or Spark, migrate it to a Teradata database,
and then unprotect the tokenized Unicode data using the Protegrity Database Protector.

Note:

Ensure that the data elements used in the data security policy, deployed on the Teradata Database Protector and Big Data Protector
machines are uniform.

8 Confidential 50



Protegrity Big Data Protector Guide 9.2.0.0 Appendix: Migrating Tokenized Unicode Data from and to a Teradata Database

8.2.1 Migrating Tokenized Unicode data using Hive or Impala protector to Teradata
database

» o migrate Tokenized Unicode data using Hive or Impala protector to Teradata database:

1. To protect the Unicode data on Hive or Impala, ensure that the following UDFs are used, as required:
» Hive: ptyProtectUnicode()
» Impala: pty UnicodeStringIns()
Migrate the tokenized Unicode data from Hive or Impala to the Teradata database.
To unprotect the tokenized Unicode data in the Teradata database, use the Protegrity Database Protector.

8.2.2 Protecting Unicode data using MapReduce or Spark protector and Migrating it to a
Teradata database

» o protect Unicode data using MapReduce or Spark protector and migrate it to a Teradata database:

Convert the cleartext format Unicode data to bytes using UTF-16LE encoding.

2. To migrate the tokenized Unicode data using MapReduce or Spark to the Teradata database, ensure that the following APIs
are used, as required:

» MapReduce: public byte[] protect(String dataElement, byte[] data)

o Spark: void protect(String dataElement, List<Integer> errorindex, byte[][] input, byte[][] output)
Send the data as input to the Protect API in the MapReduce or Spark protector, as required.

Convert the protected output in bytes to String using UTF-8 encoding.

The output is protected tokenized data.

5. Migrate the protected data to the Teradata database using any data migration utilities.

The following sample code snippet describes how to protect Unicode data using the MapReduce or Spark protector, and
migrating it to a Teradata database.

private Protector protector = null;

String[] clear_data = new String[SIZE] ;

byte[1[1 inputValueByte = new byte [clear_data.length][];

StringBuilder protectedString = new StringBuilder();

inputValueByte= data.getBytes(StandardCharsets.UTF_16LE); //Point a implementation
protector.protect(DATAELEMENT_NAME, errorindexList, inputValueByte, outputValueByte); //
Point b implementation

int x=0;

for (x=0; x<outputValueByte.length; x++)

protectedString.append(new String(outputValueByte[x],StandardCharsets.UTF_8)); //Point c
implementation

8 Confidential 51



	Copyright
	Table of Contents
	1 Introduction to This Guide
	1.1 Sections contained in this Guide
	1.2 Accessing the Protegrity documentation suite
	1.2.1 Viewing product documentation
	1.2.2 Downloading product documentation


	2 Overview of the Big Data Protector
	2.1 Components of Hadoop
	2.1.1 Hadoop Distributed File System (HDFS)
	2.1.2 MapReduce
	2.1.3 Hive
	2.1.4 Pig
	2.1.5 HBase
	2.1.6 Impala
	2.1.7 Spark

	2.2 Features of the Protegrity Big Data Protector
	2.3 Using Protegrity Data Security Platform with Hadoop
	2.4 Overview of Hadoop Application Protection
	2.4.1 Protection in MapReduce Jobs
	2.4.2 Protection in Hive Queries
	2.4.3 Protection in Pig Jobs
	2.4.4 Protection in HBase
	2.4.5 Protection in Impala
	2.4.6 Protection in Spark

	2.5 Data Security Policy and Protection Methods
	2.6 Installing and Uninstalling Big Data Protector
	2.7 Understanding the Architecture
	2.8 Working with the Log Forwarder
	2.8.1 Logging Architecture
	2.8.2 Logging Architecture of the Big Data Protector Cluster without the Proxy
	2.8.3 Logging Architecture of the Big Data Protector Cluster with the Proxy


	3 Hadoop Application Protector
	3.1 Using the Hadoop Application Protector
	3.2 Prerequisites
	3.3 MapReduce APIs
	3.4 Sample Code Usage
	3.4.1 Main Job Class – ProtectData.java
	3.4.2 Mapper Class – ProtectDataMapper.java

	3.5 Hive UDFs
	3.6 Pig UDFs

	4 HBase
	4.1 Overview of the HBase Protector
	4.2 HBase Protector Usage
	4.3 Adding Data Elements and Column Qualifier Mappings to a New Table
	4.4 Adding Data Elements and Column Qualifier Mappings to an Existing Table
	4.5 Inserting Protected Data into a Protected Table
	4.6 Retrieving Protected Data from a Table
	4.7 HBase Commands
	4.8 Ingesting Data Securely
	4.9 Extracting Data Securely

	5 Impala
	5.1 Overview of the Impala Protector
	5.2 Impala Protector Usage
	5.2.1 Creating the /user/impala path in Impala with Supergroup Permissions

	5.3 Impala UDFs
	5.4 Inserting Data from a File into a Table
	5.4.1 Preparing the environment for the basic_sample.csv file
	5.4.2 Populating the table sample_table from the basic_sample_data.csv file

	5.5 Protecting Existing Data
	5.6 Unprotecting the Protected Data
	5.7 Retrieving Data from a Table

	6 Spark
	6.1 Overview of the Spark Protector
	6.2 Spark Protector Usage
	6.3 Spark Java
	6.3.1 Spark Java APIs
	6.3.2 Spark APIs and Supported Protection Methods
	6.3.3 Loading the Cleartext Data from a File to HDFS
	6.3.4 Protecting the Existing Data
	6.3.5 Unprotecting the Protected Data
	6.3.6 Retrieving the Unprotected Data from a File

	6.4 Spark SQL
	6.4.1 DataFrames
	6.4.2 SQLContext
	6.4.3 Spark SQL UDFs
	6.4.4 Inserting Data from a File into a Table
	6.4.5 Protecting Existing Data
	6.4.6 Unprotecting and Viewing the Protected Data
	6.4.7 Retrieving Data from a Table
	6.4.8 Calling Spark SQL UDFs from Domain Specific Language (DSL)

	6.5 Spark Scala
	6.5.1 Sample Code Usage for Spark (Scala)
	6.5.1.1 Main Job Class for Protect Operation – ProtectData.scala
	6.5.1.2 Main Job Class for Unprotect Operation – UnProtectData.scala
	6.5.1.3 Utility to call Protect or Unprotect Function – DataLoader.scala
	6.5.1.4 ProtectFunction.scala
	6.5.1.5 UnprotectFunction.scala



	7 Appendix: Return Codes
	8 Appendix: Migrating Tokenized Unicode Data from and to a Teradata Database
	8.1 Migrating Tokenized Unicode Data from a Teradata Database
	8.1.1 Migrating Tokenized Unicode data from Teradata database to Hive or Impala and unprotecting it using Hive or Impala protector
	8.1.2 Migrating Tokenized Unicode data from a Teradata database to Hadoop and Unprotecting it using MapReduce or Spark protector

	8.2 Migrating Tokenized Unicode Data to a Teradata Database
	8.2.1 Migrating Tokenized Unicode data using Hive or Impala protector to Teradata database
	8.2.2 Protecting Unicode data using MapReduce or Spark protector and Migrating it to a Teradata database



