
Protegrity Protection Method Reference Guide 9.2.0.0

Created on: Aug 8, 2024

Copyright
Copyright © 2004-2024 Protegrity Corporation. All rights reserved.

Protegrity products are protected by and subject to patent protections;

Patent: https://www.protegrity.com/patents.

Protegrity logo is the trademark of Protegrity Corporation.

NOTICE TO ALL PERSONS RECEIVING THIS DOCUMENT

Some of the product names mentioned herein are used for identification purposes only and may be trademarks and/or registered
trademarks of their respective owners.

Windows, Azure, MS-SQL Server, Internet Explorer and Internet Explorer logo, Active Directory, and Hyper-V are registered
trademarks of Microsoft Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SCO and SCO UnixWare are registered trademarks of The SCO Group.

Sun, Oracle, Java, and Solaris are the registered trademarks of Oracle Corporation and/or its affiliates in the United States and
other countries.

Teradata and the Teradata logo are the trademarks or registered trademarks of Teradata Corporation or its affiliates in the United
States and other countries.

Hadoop or Apache Hadoop, Hadoop elephant logo, Hive, Presto, and Pig are trademarks of Apache Software Foundation.

Cloudera and the Cloudera logo are trademarks of Cloudera and its suppliers or licensors.

Hortonworks and the Hortonworks logo are the trademarks of Hortonworks, Inc. in the United States and other countries.

Greenplum Database is the registered trademark of VMware Corporation in the U.S. and other countries.

Pivotal HD is the registered trademark of Pivotal, Inc. in the U.S. and other countries.

PostgreSQL or Postgres is the copyright of The PostgreSQL Global Development Group and The Regents of the University of
California.

AIX, DB2, IBM and the IBM logo, and z/OS are registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide.

Utimaco Safeware AG is a member of the Sophos Group.

Xen, XenServer, and Xen Source are trademarks or registered trademarks of Citrix Systems, Inc. and/or one or more of its
subsidiaries, and may be registered in the United States Patent and Trademark Office and in other countries.

Protegrity Protection Method Reference Guide 9.2.0.0

Confidential 2

https://www.protegrity.com/patents

VMware, the VMware “boxes” logo and design, Virtual SMP and VMotion are registered trademarks or trademarks of VMware,
Inc. in the United States and/or other jurisdictions.

Amazon Web Services (AWS) and AWS Marks are the registered trademarks of Amazon.com, Inc. in the United States and other
countries.

HP is a registered trademark of the Hewlett-Packard Company.

HPE Ezmeral Data Fabric is the trademark or registered trademark of Hewlett Packard Enterprise in the United States and other
countries.

Dell is a registered trademark of Dell Inc.

Novell is a registered trademark of Novell, Inc. in the United States and other countries.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Mozilla and Firefox are registered trademarks of Mozilla foundation.

Chrome and Google Cloud Platform (GCP) are registered trademarks of Google Inc.

Protegrity Protection Method Reference Guide 9.2.0.0

Confidential 3

Table of Contents
Copyright... 2

Chapter 1 Introduction to This Guide... 6
1.1 Sections contained in this Guide...6
1.2 Accessing the Protegrity documentation suite..7

1.2.1 Viewing product documentation...7
1.2.2 Downloading product documentation.. 8

Chapter 2 Protegrity Protection Methods Overview..9

Chapter 3 Protegrity Tokenization...12
3.1 Delimiters... 14
3.2 Support by Protegrity Products...14
3.3 Tokenization Properties.. 19

3.3.1 Token Type and Format.. 21
3.3.2 Static Lookup Table (SLT) Tokenizers...21
3.3.3 Left and Right Settings...26
3.3.4 Internal Initialization Vector (IV)...26
3.3.5 Minimum and Maximum Input Length..27

3.3.5.1 Calculating Token Length (Zero-Length Tokens).. 30
3.3.6 Length Preserving...32
3.3.7 Short Data Tokenization... 33
3.3.8 Case-Preserving and Position-Preserving Tokenization...34

3.3.8.1 Case-Preserving Tokenization..34
3.3.8.2 Position-Preserving Tokenization...35

3.3.9 External Initialization Vector (IV)..35
3.3.9.1 Tokenization model with External IV.. 35
3.3.9.2 External IV Tokenization Properties.. 36

3.3.10 Truncating White Spaces..37
3.4 Tokenization Types .. 37

3.4.1 Numeric (0-9)... 37
3.4.2 Integer (0-9)..40
3.4.3 Credit Card... 42

3.4.3.1 Invalid Luhn Checksum... 45
3.4.3.2 Invalid Card Type... 45
3.4.3.3 Alphabetic Indicator...46
3.4.3.4 Credit Card Properties with SLT Tokenizers..46

3.4.4 Alpha (A-Z).. 47
3.4.5 Upper-case Alpha (A-Z)...50
3.4.6 Alpha-Numeric (0-9, a-z, A-Z).. 53
3.4.7 Upper Alpha-Numeric (0-9, A-Z).. 56
3.4.8 Lower ASCII.. 59
3.4.9 Printable..62
3.4.10 Date (YYYY-MM-DD, DD/MM/YYYY, MM.DD.YYYY)..65
3.4.11 Datetime (YYYY-MM-DD HH:MM:SS)...68
3.4.12 Decimal...73
3.4.13 Unicode...75
3.4.14 Unicode Base64..78
3.4.15 Unicode Gen2...81

3.4.15.1 Code Point Range in Unicode Gen2 Token Type...85
3.4.16 Binary... 86
3.4.17 Email...87

3.4.17.1 Email Token Format... 89

Protegrity Protection Method Reference Guide 9.2.0.0 Table of Contents

Confidential 4

Chapter 4 Protegrity Format Preserving Encryption.. 92
4.1 FPE Properties.. 92
4.2 Code Points...97
4.3 Tweak Input.. 98
4.4 Left and Right Settings... 98
4.5 Handling Special Numeric Data... 98
4.6 Encryption Algorithm...99

Chapter 5 Protegrity Encryption... 100
5.1 Encryption Properties (IV, CRC, Key ID).. 104

5.1.1 Key IDs...104
5.2 Data Length and Padding in Encryption...105

5.2.1 Ciphertext Format...105
5.3 Encryption Algorithms... 106

5.3.1 3DES...106
5.3.2 AES-128 and AES-256...108

5.3.2.1 AES-128... 108
5.3.2.2 AES-256... 110

5.3.3 CUSP.. 111

Chapter 6 No Encryption.. 114

Chapter 7 Monitor... 118

Chapter 8 Masking.. 122
8.1 Masks..125

Chapter 9 Hashing... 128

Chapter 10 Appendix A: ASCII Character Codes... 131

Chapter 11 Appendix B: Examples of Column Sizes Calculation for Encryption.. 139

Chapter 12 Appendix C: Empty String Handling by Protectors.. 141

Chapter 13 Appendix D: NULL Handling by Protectors.. 153

Chapter 14 Appendix E: Hashing Functions and Examples... 156
14.1 Hash Data column size... 156
14.2 Using Hashing Triggers and View..156

Chapter 15 Appendix F: Codebook Re-shuffling in the Data Security Gateway (DSG).. 158

Index..159

Protegrity Protection Method Reference Guide 9.2.0.0 Table of Contents

Confidential 5

Chapter 1
Introduction to This Guide

1.1 Sections contained in this Guide

1.2 Accessing the Protegrity documentation suite

This guide provides an overview of protection methods supported by Protegrity products. It explains properties of protection methods,
and provides examples of their usage.

The document is intended for Security Officers who will create and manage data security policies. The document guides you through
Protegrity protection methods, providing a comparison of all of the methods, and helping you to select the method that will fit your
enterprise and specific business requirements appropriately.

This guide should be used along with the Protegrity Enterprise Security Administrator Guide 9.2.0.0, which explains the mechanism
of managing data security policy.

It is recommended that you first read the sections explaining the properties of protection methods. It will give you better understanding
of the properties applicable to each specific protection method.

1.1 Sections contained in this Guide

The guide is broadly divided into the following sections:

• Section 1 Introduction to This Guide defines the purpose and scope for this guide. In addition, it explains how information is
organized in this guide.

• Section 2 Protegrity Protection Methods Overview provides an overview about the Protegrity Protection Methods.

• Section 3 Protegrity Tokenization provides information about Tokenization and tokenization types.

• Section 4 Protegrity Format Preserving Encryption provides information about a data encryption technique that preserves the
ciphertext format using FF1 mode of operation for AES-256 block cipher algorithm.

• Section 5 Protegrity Encryption provides information about the Protegrity Encryption algorithms.

• Section 6 Monitoring and Blocking (No Encryption) provides information about monitoring and Blocking data where
encryption is not used for data protection.

• Section 7 Hashing provides information about the Hashing data protection algorithm.

• Section 8 Masking provides information about the masking method.

• Appendix A: ASCII Character Codes provides a table that lists the ASCII Character Codes.

• Appendix B: Examples of Column Sizes Calculation for Encryption provides a table that contains the Column Sizes
Calculation for 3DES encryption.

• Appendix C: Empty String Handling by Protectors provides information about how Protectors provide Empty String Handling
support on different systems.

• Appendix D: NULL Handling by Protectors provides information about the behavior of Protectors on different systems when
NULL value is the input.

Protegrity Protection Method Reference Guide 9.2.0.0 Introduction to This Guide

Confidential 6

• Appendix E: Hashing Functions and Examples provides information about the Hashing functions and examples.

• Appendix F: Codebook Re-shuffling in the Data Security Gateway (DSG) provides information about the Codebook Re-
shuffling feature.

1.2 Accessing the Protegrity documentation suite
This section describes the methods to access the Protegrity Documentation Suite using the My.Protegrity portal.

1.2.1 Viewing product documentation

The Product Documentation section under Resources is a repository for Protegrity product documentation. The documentation
for the latest product release is displayed first. The documentation is available in the HTML format and can be viewed using your
browser. You can also view and download the .pdf files of the required product documentation.

1. Log in to the My.Protegrity portal.

2. Click Resources > Product Documentation.

3. Click a product version.
The documentation appears.

Figure 1-1: Documentation

4. Expand and click the link for the required documentation.

5. If required, then enter text in the Search field to search for keywords in the documentation.

The search is dynamic, and filters results while you type the text.

6. Click the Print PDF icon from the upper-right corner of the page.
The page with links for viewing and downloading the guides appears. You can view and print the guides that you require.

Protegrity Protection Method Reference Guide 9.2.0.0 Introduction to This Guide

Confidential 7

https://my.protegrity.com
https://my.protegrity.com

1.2.2 Downloading product documentation

This section explains the procedure to download the product documentation from the My.Protegrity portal.

1. Click Product Management > Explore Products.

2. Select Product Documentation.
The Explore Products page is displayed. You can view the product documentation of various Protegrity products as per their
releases, containing an overview and other guidelines to use these products at ease.

3. Click View Products to advance to the product listing screen.

4. Click the View icon () from the Action column for the row marked On-Prem in the Target Platform Details column.

If you want to filter the list, then use the filters for: OS, Target Platform, and Search fields.

5. Click the icon for the action that you want to perform.

Protegrity Protection Method Reference Guide 9.2.0.0 Introduction to This Guide

Confidential 8

https://my.protegrity.com

Chapter 2
Protegrity Protection Methods Overview
Protegrity products can protect sensitive data with the following protection methods:

• Tokenization

• Format Preserving Encryption (FPE)

• Encryption

• Hashing

• No Encryption

• Monitoring

• Masking

The following table describes the protection methods available for each data security policy type (structured and unstructured
protection). For more information, refer to Protegrity Enterprise Security Administrator Guide 9.2.0.0.

Table 2-1: Protection Methods by Data Security Policy Type

Protection Method Description Structured Unstructured

Tokenization (all types) Bound to the token element created on ESA. For more information, refer
to section 3 Protegrity Tokenization.

√

Format Preserving
Encryption (FPE)

A data encryption technique that preserves the ciphertext format using
FF1 mode of operation for AES-256 block cipher algorithm. For more
information, refer to section 4 Protegrity Format Preserving Encryption.

√

3DES A block cipher with 168 bit encryption keys. √ √

AES-128 A block cipher with 128 bit encryption keys. √ √

AES-256 A block cipher with 256 bit encryption keys. √ √

CUSP 3DES, CUSP
AES-128, CUSP
AES-256

A modified block algorithm mainly used in environments where an IBM
mainframe is present.

√

No Encryption Does not protect data at rest by changing it. Protection comes from
monitoring and masking.

√

Monitoring Does not protect data at rest by changing it. Used for monitoring and
auditing.

√

Masking Does not protect data at rest by changing it. Protection comes from
masking.

√

Hashing (HMAC-SHA1) A Keyed-Hash Message Authentication Code. Used only for protection
of data. Since hashing is a one-way function, the original data cannot be
restored.

√

Protegrity protection methods (tokenization, encryption, no encryption, monitoring, masking, and hashing) support a number of input
formats so that you can protect sensitive data such as:

• Social Security Numbers (SSNs)

• Credit Card Numbers (CCNs)

• Electronic Personal Health Information (ePHI), which is controlled by Health Insurance Portability and Accountability Act
(HIPPA) and Health Information Technology for Economic and Clinical Health (HITECH)

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Protection Methods Overview

Confidential 9

• Personally identifiable information (PII)

The following table shows different types of sensitive data that can be protected with the Protegrity platform and demonstrates input
values and their corresponding protected values.

Table 2-2: Examples of Protected Data

Type of Data Input Protected Value Comment

1 SSN delimiters 075-67-2278 287-38-2567 Numeric token, delimiters in input

2 Credit Card 5511 3092 3993 4975 8278 2789 2990 2789 Numeric token

3 Credit Card 5511 3092 3993 4975 8278 2789 2990 4975 Numeric token, last 4 digits in clear

4 Credit Card 5511309239934975 551130########## No Encryption with mask exposing the first 6
digits. A mask is applied by the data security
policy when a user tries to view the protected
value.

5 Credit Card 5511309239934975 1437623387940746 Credit Card token with invalid Luhn digit
property. Tokenized value has invalid Luhn
checksum.

6 Credit Card 5511309239934975 8313123036143103 Credit Card token with invalid card type
identification. The first digit in tokenized value
is not a valid card type.

7 Credit Card 5511309239934975 1854817J97347370 Credit Card token with alphabetic indicator on
8th position

8 Phone/Fax
number

1 888 397 8192 9 853 888 8435 Numeric token

9 Medical ID 29M2009ID iA6wx0Mw1 Alpha-Numeric token

10 Date 10/30/1955 12/25/2034 Date token

11 Date with month
in clear

2009.04.12 1595.04.19 Datetime token, month is not tokenized

12 Date and Time 2012.12.31 12:23:34 1816.07.22 14:31:51 Datetime token, date and time parts are
tokenized

13 Date which should
be distinguishable

2012.12.31 7867.03.12 Datetime token, distinguishable year

14 Proper names Alfred Hitchcock uRLzbg cvofdBFJh Alpha token

15 Short names Al kKX Alpha token non-length preserving

16 Abbreviations CXR GTP Upper-case Alpha token

17 License plates 583-LBE 44J-KLT Upper Alpha-Numeric token

18 Addresses 5 High Ridge Park,
Stamford

5 hcY2 k9rLp Z0uA, KunZYNEM Alpha-Numeric token. Punctuation marks and
spaces are treated as delimiters.

19 E-mail Address a@gmail.com h@MSGXJ.com Alpha-Numeric token, delimiters in input, last 3
characters in clear

20 Strong passwords 2$trongPa$$ KÒý¿ú!â¥%¸_ Printable token

21 Fuzzy times 1994-01-01_00.00.00 Û-TIÇLæpj\aDv4ë}{9 Printable token2

22 Unicode text €¥©�ă÷ CaqRppjFPwY22w5fDhUkxNG Unicode token

23 Unicode text mbiVtZxJonVWS7IPB6yz6tztblYBfkj Unicode token

24 Unicode Base64 BftgxVX0t+O+I8v Unicode Base64 token

25 Unicode Gen2 Unicode Gen2 token with custom alphabets as
defined in the data element.

26 Financial data -3015.039 -4416.646 Decimal token. Protected value will never
contain any zeroes.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Protection Methods Overview

Confidential 10

Type of Data Input Protected Value Comment

27 Photographic
images, media
files

Media stored as BLOB
type

Encrypted BLOB Encryption (AES-256, AES-128, 3DES) or
hashing (HMAC-SHA1)

28 Irreversible data to
be destroyed

AnyDataTo Destroy Q2LKa2UhIhMTiRsi0l8BUF5xVag= Hashing (HMAC-SHA1), data cannot be
decrypted

You can combine Protegrity protection methods to obtain the required level of data access control within the enterprise.

For example, a Security Officer can use a data security policy to control what is delivered to different roles in the policy. The following
figure shows how Social Security Number access can vary by different users and applications.

Figure 2-1: SSN Access

In the previous figure, the tokenized SSN is stored in the database. However, there are four roles defined in the policy: authorized
users, privileged users, off-the-shelf application users, and homegrown application users. Each role can receive a different form of the
SSN based on its need. The Security Officer determines the SSN form by role.

Protegrity tokenization maintains a separation of duties by way of the data security policy. The DBA, Developers, and System
Administrators do not have access to the data, even if they manage the system, because everything goes through the data security
policy.

For more information about data security policies, refer to the Managing Security Policies section in the Enterprise Security
Administrator Guide 9.1.0.0.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Protection Methods Overview

Confidential 11

Chapter 3
Protegrity Tokenization

3.1 Delimiters

3.2 Support by Protegrity Products

3.3 Tokenization Properties

3.4 Tokenization Types

Tokenization is the process of replacing sensitive data with an inert value that has no worth to someone who gains unauthorized access
to the data. With tokenization, specific pieces of original data can be preserved, while the system tokenizes data according to design.
Once tokenization is deployed, operational systems continually work with the tokens. If the operational systems experience a security
breach, then only the tokens are at risk of being compromised.

Protegrity tokenization is a tokenization method that is optimized to meet the performance, scalability, and manageability requirements
of large and complex environments. Tokens can be set up and deployed directly on the protection point, depending on your enterprise
configuration and data security needs. Protegrity tokenization is transparent to end-users. Data integrity is strongly enforced by way of
the data security policy.

Protegrity tokenization can protect many different types of data using Numeric, Integer, Alpha, Upper-case Alpha, Alpha-Numeric,
Upper Alpha-Numeric, Lower ASCII, Printable, Date, Datetime, Credit Card, Decimal, Unicode, Unicode Base64, Unicode Gen2,
Binary, and Email token types. The token specification can also be used to preserve different parts of the original value in the token,
such as the last 4 digits. Protegrity tokenization also recognizes and preserves delimiters, which are often used in SSNs, dates, etc.

Protegrity tokenization allows you to tokenize payment card industry (PCI) data and a variety of input data types, such as personally
identifiable information (PII), and protected health information (PHI) to comply with industry regulations.

With Protegrity tokenization, there is a 1:1 relation between the real data value and its token value. This enables token values to be
used as an alternative unique ID that can be used for joining related information.

The following table describes the token types supported by Protegrity tokenization.

Table 3-1: Tokenization Types

Tokenization Type Alphabet Characters Comment

Numeric (0-9) Digits 0 through 9

Integer Digits 0 through 9 Data length: 2 bytes, 4 bytes, and 8 bytes

Credit Card Digits 0 through 9 Special settings: Invalid LUHN digit, invalid card type,
alphabetic indicator

Alpha (a-z, A-Z) Lowercase letters a through z

Uppercase letters A through Z

Upper-case Alpha (A-Z) Uppercase letters A through Z Lower case characters will be converted to upper-case
in output value

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 12

Tokenization Type Alphabet Characters Comment

Alpha-Numeric (0-9, a-z, A-Z) Digits 0 through 9

Lowercase letters a through z

Uppercase letters A through Z

Upper Alpha-Numeric (0-9, A-Z) Digits 0 through 9

Uppercase letters A through Z

Lower case characters will be converted to upper-case
in output value

Lower ASCII The lower part of ASCII table. Hex
character codes from 0x21 to 0x7E

Support of 94 printable characters (ASCII from 33 (!)
to 126(~)), the rest are treated as delimiters

Printable ASCII printable characters, which include
letters, digits, punctuation marks, and
miscellaneous symbols. Hex character
codes from 0x20 to 0x7E, and from 0xA0
to 0xFF

ISO 8859-15 Latin alphabet no. 9

Date YYYY-MM-DD Date in big endian form, starting with
the year. The following separators are
supported: .(dot), / (slash), - (dash).

Date DD/MM/YYYY Date in little endian form, starting with
the day. The following separators are
supported: . (dot), / (slash), - (dash).

Date MM.DD.YYYY Date in middle endian form, starting
with the month. The following separators
are supported: . (dot), / (slash), - (dash)
supported.

Datetime YYYY-MM-DD HH:MM:SS Special settings : Tokenize time, Distinguishable date,
Date in clear

Decimal Digits 0 through 9 sign and .(decimal
delimiter)

Numeric data with precision and scale. The token will
not contain any zeros.

Unicode UTF-8 text. Hex character codes from
0x00 to 0xFF

Result is Alpha-Numeric. Supported by Application
protectors, Big Data protector, and Teradata Database
protector.

Unicode Base64 UTF-8 text. Hex character codes from
0x00 to 0xFF

Result is Alpha-Numeric, +, /, and =. Supported
by Application protectors, Big Data protector, and
Teradata Database protector.

Unicode Gen2 Unicode code points between U+0020
and U+3FFFF

Result is based on the alphabet selected while creating
the token.

Binary Hex character codes from 0x00 to 0xFF Supported by Application protectors

Email Digits 0 through 9

Lowercase letters a through z

Uppercase letters A through Z

Special characters with restrictions @
sign and .(dot) are delimiters

Domain part after @ sign will not be tokenized

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 13

3.1 Delimiters
Protegrity tokenization can generate the same token regardless of how the data is formatted. Any input that does not comply with
the token types in the previous table is treated as a delimiter and remains unchanged during tokenization.

The following table shows how the system handles delimiters and spaces as compared to plain numerical data.

Table 3-2: Tokenization with Delimiters

Input CCN Token Value returned by Protegrity
tokenization

5332711989955364 5332711989955364 8344588301109112 8344588301109112

5332-7119-8995-5364 5332711989955364 8344588301109112 8344-5883-0110-9112

5332 7119 8995 5364 5332711989955364 8344588301109112 8344 5883 0110 9112

3.2 Support by Protegrity Products
Tokenization is supported on protectors supporting structured policies.

Application protectors support all types of tokens. Database protectors have limitations on support of Unicode and Binary token
types.

The following four tables list the Data Types to be used with different tokenization types across Application, Databases, and Big
Data Protectors.

Table 3-3: Supported Tokenization Types by Application Protector

Tokenization
Type*1

Application Protector

AP Python AP Java AP C AP Go AP .Net AP NodeJS

Credit Card

Numeric

Alpha

Upper-case Alpha

Alpha-Numeric

Upper Alpha-
Numeric

Printable*2

Lower ASCII

Email

STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

STRING

BYTE[]

STRING

BYTE[]

Integer INT: 4 bytes and 8
bytes

SHORT: 2 bytes

INT: 4 bytes

LONG: 8 bytes

BYTE[] SHORT: 2 bytes

INT: 4 bytes

LONG: 8 bytes

STRING

BYTE[]

STRING

BYTE[]

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 14

Tokenization
Type*1

Application Protector

AP Python AP Java AP C AP Go AP .Net AP NodeJS

Date

Datetime

DATE

STRING

BYTES

DATE

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

STRING

BYTE[]

STRING

BYTE[]

Decimal STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

STRING

BYTE[]

STRING

BYTE[]

Unicode STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

STRING

BYTE[]

STRING

BYTE[]

Unicode Base64 STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

STRING

BYTE[]

STRING

BYTE[]

Unicode Gen2 STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

STRING

BYTE[]

STRING

BYTE[]

Binary BYTES BYTE[] BYTE[] BYTE[] BYTE[] BYTE[]

Note:
*1- If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2- Printable token data element is unsupported by the AP .Net and AP NodeJS.

Table 3-4: Supported Tokenization Types by Database Protectors

Tokenization Type Database

MSSQL Server Oracle DB/2

Credit Card

Numeric

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR

CHAR

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 15

Tokenization Type Database

MSSQL Server Oracle DB/2

Alpha

Upper-case Alpha

Alpha-Numeric

Upper Alpha-Numeric

Printable

Lower ASCII

Email

Integer INTEGER INTEGER INTEGER

Date

Datetime

VARCHAR

CHAR

DATE

VARCHAR2

CHAR

DATE

VARCHAR

CHAR

Decimal VARCHAR

CHAR

NUMBER

VARCHAR2

CHAR

VARCHAR2

CHAR

Unicode Not supported Not supported Not supported

Unicode Base64 Not supported VARCHAR2

NVARCHAR2

Not supported

Unicode Gen2 Not supported VARCHAR2

NVARCHAR2

Not supported

Binary Not supported Not supported Not supported

Table 3-5: Supported Tokenization Types for MPP Database Protectors

Tokenization Type MPP Database

GPDB Teradata IBM Netezza

Credit Card

Numeric

Alpha

Upper-case Alpha

Alpha-Numeric

VARCHAR VARCHAR LATIN

CHAR LATIN

VARCHAR

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 16

Tokenization Type MPP Database

GPDB Teradata IBM Netezza

Upper Alpha-Numeric

Printable

Lower ASCII

Email

Integer INTEGER INTEGER INTEGER

Date

Datetime

DATE

VARCHAR

VARCHAR LATIN

CHAR LATIN

DATE

VARCHAR

Decimal VARCHAR VARCHAR LATIN

CHAR LATIN

VARCHAR

Unicode Not supported VARCHAR UNICODE

CHAR UNICODE

Not supported

Unicode Base64 Not supported Not supported Not supported

Unicode Gen2 Not supported Not supported Not supported

Binary Not supported Not supported Not supported

Table 3-6: Supported Tokenization Types for Big Data Protectors

Tokenization
Type*1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL Presto

Credit Card

Numeric

Alpha

Upper-case
Alpha

Alpha-
Numeric

Upper Alpha-
Numeric

Lower ASCII

Email

BYTE[] STRING CHARARRA
Y

BYTE[] STRING VARCHAR

STRING

STRING VARCHAR

Integer INT: 4 bytes INT: 4 bytes INT: 4 bytes BYTE[] INT: 4 bytes SHORT: 2
bytes

INT: 4 bytes

SHORT: 2
bytes

INT: 4 bytes

SMALL INT:
2 bytes

INT: 4 bytes

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 17

Tokenization
Type*1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL Presto

LONG: 8
bytes

BIGINT: 8
bytes

LONG: 8
bytes

LONG: 8
bytes

BIGINT: 8
bytes

Date

Datetime

*2

BYTE[] STRING

DATE

DATETIME

CHARARRA
Y

BYTE[] STRING BYTE[]

STRING

STRING

DATE

DATETIME

VARCH AR

DATE

TIMES
TAMP

Decimal BYTE[] STRING CHARARRA
Y

BYTE[] STRING BYTE[]

STRING

STRING VARCHAR

Printable BYTE[] Not supported Not supported BYTE[] STRING BYTE[] Not supported Not supported

Unicode BYTE[] STRING Not supported BYTE[] STRING BYTE[]

STRING

STRING VARCHAR

Unicode
Base64

BYTE[] STRING Not supported BYTE[] STRING BYTE[]

STRING

STRING VARCHAR

Unicode Gen2 BYTE[] STRING Not supported BYTE[] STRING BYTE[]

STRING

STRING VARCHAR

Binary BYTE[] Not supported Not supported BYTE[] Not supported BYTE[] Not supported Not supported

Note:
*1 - The customer application should convert the input to and output from byte array.

*2 - The Datetime tokenization will only work with VARCHAR data type.

*3 - The Char tokenization UDFs only support Numeric, Alpha, Alpha Numeric, Upper-case Alpha, Upper Alpha-Numeric, and Email
data elements, and with length preservation selected. Using any other data elements with Char tokenization UDFs is not supported. Using
non-length preserving data elements with Char tokenization UDFs is not supported.

Note:

If you have fixed length data fields and the input data is shorter than the length of the field, then ensure that you truncate the trailing white
spaces and leading white spaces, if applicable, before passing the input to the respective Protect and Unprotect UDFs.

The truncation of the white spaces ensures that the results of the protection and unprotection operations will result in consistent data output
across the Protegrity products.

For more information, refer to section Truncating White Spaces.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 18

3.3 Tokenization Properties
The properties for a token element are specified when the token element is created. Some are input by the end-user, and some are
calculated.

Table 3-7: Common Tokenization Properties

Token Property Description

User configured token properties

Name Unique name identifying the token element.

Maximum length is 56 characters.

Token type and Format Type of data to tokenize. Name of the alphabet, which indicates the
specific characters to tokenize.

Tokenizer How many and what kind of lookup tables to generate (SLT_1_3,
SLT_1_6, SLT_2_3, SLT_2_6, SLT_6_DECIMAL, SLT_DATETIME,
and SLT_X_1).

Note: The newly created data elements using the SLT_2_6
tokenizer from v7.1 Maintenance Release 1 (MR1) onwards are
deployable to protectors with versions 7.1 MR1 and higher.

Note:

The SLT_X_1 tokenizer can only be used to create the data
elements for protectors with version 9.1.0.0 and higher and with
the Unicode Gen2 token type.

Preserve Case Whether the case of the alphabets and position of the alphabets
and numbers must be preserved when tokenizing the value. This is
applicable when using the Alpha-Numeric (0-9, a-z, A-Z) token type
and the SLT_2_3 tokenizer only.

Preserve Position Whether the position of the alphabets and numbers must be preserved
when tokenizing the value. This is applicable when using the Alpha-
Numeric (0-9, a-z, A-Z) token type and the SLT_2_3 tokenizer only.

Preserve length Whether tokens will be the same length as the input or not.

Allow Short Tokens Whether short tokens will be enabled or not (Possible options are Yes,
No, generate error, or No, return input as it is).

Left Number of characters from left to keep in clear.

Right Number of characters from right to keep in clear.

Minimum input length Shortest length that can be tokenized.

Maximum input length Longest length that can be tokenized.

Automatically calculated token properties

External IV Whether external initialization vector (IV) will be used or not.

Other token properties

Internal IV Whether internal initialization vector (IV) will be used or not.

All the options cannot be combined with all types of tokens. The following table shows what properties can be set for the various
types.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 19

Table 3-8: Tokenization Properties by Token Types

Tokenization
Type

Tokenizer Preserve
length

Preserve
Case/
Preserve
Position

Allow Short
Tokens

Left, Right Minimum/
Maximum length

External IV Internal IV

Numeric SLT_1_3,
SLT_2_3,
SLT_1_6,
SLT_2_6*1

√ X √ √ X √ √

Integer SLT_1_3 √ X X X X X X

Credit Card SLT_1_3,
SLT_2_3,
SLT_1_6,
SLT_2_6*1

√ (always
yes)

X X √ X √ √

Alpha SLT_1_3,
SLT_2_3

√ X √ √ X √ √

Upper-case
Alpha

SLT_1_3,
SLT_2_3

√ X √ √ X √ √

Alpha-
Numeric

SLT_1_3,
SLT_2_3

√ X √ √ X √ √

SLT_2_3 √ √ √ √ X √ √

Upper Alpha-
Numeric

SLT_1_3,
SLT_2_3

√ X √ √ X √ √

Lower ASCII SLT_1_3 √ X √ √ X √ √

Printable SLT_1_3 √ X √ √ X √ √

Date YYYY-
MM-DD

SLT_1_3,
SLT_2_3,
SLT_1_6,
SLT_2_6*1

√ (always
yes)

X X X (0, 0) X X X

Date
DD/MM/
YYYY

SLT_1_3,
SLT_2_3,
SLT_1_6,
SLT_2_6*1

√ (always
yes)

X X X (0, 0) X X X

Date
MM.DD.YY
YY

SLT_1_3,
SLT_2_3,
SLT_1_6,
SLT_2_6*1

√ (always
yes)

X X X (0, 0) X X X

Datetime SLT_DATETI
ME

√ (always
yes)

X X X (0, 0) X X X

Decimal SLT_6_DECI
MAL

X (always
no)

X X X (0, 0) √ X X

Unicode SLT_1_3,
SLT_2_3

X (always
no)

X √ X (0, 0) X √ X

Unicode
Base64

SLT_1_3,
SLT_2_3

X (always
no)

X √ X (0, 0) X √ X

Unicode
Gen2

SLT_1_3

SLT_X_1

√ X √ √ X √ √

Binary SLT_1_3,
SLT_2_3

X (always
no)

X X √ X √ √

Email SLT_1_3,
SLT_2_3

√ X √ X (0, 0) X √ X

X - means that Property is disabled and cannot be specified

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 20

√ - means that Property is enabled or can be specified

Note: *1The newly created data elements using the SLT_2_6 tokenizer from v7.1 Maintenance Release 1 (MR1) onwards are deployable to
protectors with versions 7.1 MR1 and higher.

3.3.1 Token Type and Format

The token type specifies the data that should be tokenized, for instance with the characters to expect as input and the output to
generate.

The format is a name of an alphabet that contains all characters considered for tokenization, it is derived from the Token Type
property. Characters outside the alphabet are considered to be delimiters.

Refer to the table Tokenization Types for the full list of supported token types.

3.3.2 Static Lookup Table (SLT) Tokenizers

A static lookup table (SLT) contains a pre-generated list of all possible values from a given set of characters. An alphabetic
lookup table for instance might contain all values from ‘Aa’ to ‘Zz’. All entries are then shuffled so that they are in random order.

SLT tokenizer represents a method that uses multiple SLTs to generate tokens. This is done by first dividing the input value into
smaller pieces, called token blocks, which correspond to entries in the lookup tables. The token blocks are then substituted with
values from the SLTs and chained together to form the final token value. This means that the token is a result of multiple lookups
in multiple SLTs.

Another benefit of SLT tokenizers is that tokenization can be done locally on the protection point. With this solution, tokenization
is performed locally within the Protection Enforcement Point (PEP) environment.

For more information, refer to the Data Elements Deployment section in the Protegrity Enterprise Security Administrator Guide
9.2.0.0.

There are several types of SLT tokenizers from which you can choose. They are distinguished by their block size and the number
of lookup tables.

Table 3-9: SLT Tokenizer with block size and lookup tables

Tokenizer Allow Short Tokens No. of lookup tables Block size

SLT_1_3 Yes 1 1

1 2

1 3

No, return input as it is

No, generate error

1 3

SLT_2_3 Yes 2 1

2 2

2 3

No, return input as it is

No, generate error

2 3

SLT_1_6 Yes 1 1

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 21

Tokenizer Allow Short Tokens No. of lookup tables Block size

1 2

1 3

1 6

No, return input as it is

No, generate error

1 6

SLT_2_6*1 Yes 2 1

2 2

2 3

2 6

No, return input as it is

No, generate error

2 6

SLT_6_DECIMAL NA Multiple lookup tables:

One for each input length in the range 1 to 5

One for input lengths >= 6

SLT_DATETIME NA Multiple lookup tables

SLT_X_1 Yes 5-98*2 1

No, return input as it is

No, generate error

3-96*2 1

Note: *1 - The data elements created using the SLT_2_6 tokenizer are not deployable to protectors lower than versions 7.1.

Note: *2 - For the SLT_X_1 tokenizer, the number of lookup tables used for the security operations is determined during the creation of the
data elements.

The following table describes the types of SLT tokenizers and compares their characteristics.

Table 3-10: SLT Tokenizer Characteristics

Token Type Tokenizer Allow Short
Tokens

Maximum Size of
Token Tables
(number of
entries)

Size of Token
Tables (kB)

Amount of
Memory used in
the Protector (kB)

Comments

Numeric SLT_1_3

SLT_2_3

SLT_1_6

SLT_2_6

No, generate error

No, return input as
it is

1,000

2*1,000

1,000,000

2*1,000,000

4

8

3,906

7,812

8

16

7,812

15,624

Yes 1,110 4.33 8.66

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 22

Token Type Tokenizer Allow Short
Tokens

Maximum Size of
Token Tables
(number of
entries)

Size of Token
Tables (kB)

Amount of
Memory used in
the Protector (kB)

Comments

2*1,110

1,001,110

2*1,001,110

8.66

3,910.58

7,821.17

17.32

7,821.17

15,642.34

Integer SLT_1_3 NA 4096 16 32

Credit Card SLT 1_3

SLT 2_3

SLT 1_6

SLT 2_6

NA 1,000

2*1,000

1,000,000

2*1,000,000

4

8

3,906

7,812

8

16

7,812

15,624

Alpha SLT 1_3

SLT 2_3

No, generate error

No, return input as
it is

140, 608

2*140,608

549

1,098

1,098

2,196

Yes 143,364

2*143,364

560.01

1,120.02

1,120.02

2,240.04

Upper-case Alpha SLT 1_3

SLT 2_3

No, generate error

No, return input as
it is

17,576

2*17,576

69

138

138

276

Yes 18,278

2*18,278

71.39

142.79

142.79

285.59

Alpha-Numeric SLT 1_3

SLT 2_3

No, generate error

No, return input as
it is

238,328

2*238,328

931

1,862

1,862

3,724

Yes 242,234

2*242,234

946.22

1,892.45

1,892.45

3,784.90

Upper Alpha-
Numeric

SLT 1_3

SLT 2_3

No, generate error

No, return input as
it is

46,656

2*46,656

182

364

364

728

Yes 47,988 187.45 374.90

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 23

Token Type Tokenizer Allow Short
Tokens

Maximum Size of
Token Tables
(number of
entries)

Size of Token
Tables (kB)

Amount of
Memory used in
the Protector (kB)

Comments

2*47,988 374.90 749.81

Lower ASCII SLT 1_3 No, generate error

No, return input as
it is

830,584 3,244 6,488

Yes 839,514 3,279.35 6,558.70

Printable SLT 1_3 No, generate error

No, return input as
it is

6,967,871 27,218 54,436

Yes 7,004,543 27,361.49 54,722.99

Date YYYY-MM-
DD

SLT_1_3

SLT_2_3

SLT_1_6

SLT_2_6

NA 1,000

2*1,000

1,000,000

2*1,000,000

4

8

3,906

7,812

8

16

7,812

15,624

Date DD/MM/
YYYY

SLT_1_3

SLT_2_3

SLT_1_6

SLT_2_6

NA 1,000

2*1,000

1,000,000

2*1,000,000

4

8

3,906

7,812

8

16

7,812

15,624

Date
MM.DD.YYYY

SLT_1_3

SLT_2_3

SLT_1_6

SLT_2_6

NA 1,000

2*1,000

1,000,000

2*1,000,000

4

8

3,906

7,812

8

16

7,812

15,624

Datetime SLT_DATETIME NA 1,000,000 +
86,400

4,244 8,488 Maximum
memory is used
when both date
part and time part
will be tokenized

Decimal SLT_6_DECIMA
L

NA 597,870 2,335 4,670

Unicode SLT_1_3 No, generate error 238,328 931 1,862 Same tokenizers
and other values as

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 24

Token Type Tokenizer Allow Short
Tokens

Maximum Size of
Token Tables
(number of
entries)

Size of Token
Tables (kB)

Amount of
Memory used in
the Protector (kB)

Comments

SLT_2_3 No, return input as
it is

2*238,328 1,862 3,724 for Alpha-Numeric
token element

Yes

Unicode Base64 SLT_1_3

SLT_2_3

No, generate error

No, return input as
it is

274,625

2*274,625

1,073

2,146

2,146

4,292

Same tokenizers
and other values as
for Alpha-Numeric
token element

Yes

Unicode Gen2 SLT_1_3

SLT_X_1

No, generate error

No, generate error

No, return input as
it is

4,096,000

359,994*1

16,384

1,440*1

32,768

2,880*1

SLT_1_3

SLT_X_1

Yes

Yes

4,121,760

500,000*2

16,488

2,000*2

32,975

4,000*2

Binary SLT_1_3

SLT_2_3

NA 238,328

2*238,328

931

1,862

1,862

3,724

Same tokenizers
and other values as
for Alpha-Numeric
token element

Email SLT_1_3

SLT_2_3

No, generate error

No, return input as
it is

238,328

2*238,328

931

1,862

1,862

3,724

Same tokenizers
and other values as
for Alpha-Numeric
token element

Yes 242,234

2*242,234

946.22

1,892.45

1,892.45

3,784.90

Note: The data elements created using the SLT_2_6 tokenizer are not deployable to protectors lower than versions 7.1.

Important:

The alphabet size denotes the number of code points present in an alphabet.

Note:

*1 - The characteristic values of the SLT_X_1 tokenizer are applicable if the alphabet size is 59,999.

Note:

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 25

*2 - The characteristic values of the SLT_X_1 tokenizer are applicable if the alphabet size is 100,000.

The amount of memory used in the protector is twice the size of the token tables (kB) because an inverted SLT is stored in shared
memory, in addition to the original SLT.

3.3.3 Left and Right Settings

This property indicates the number of characters from left and right that will remain in the clear and hence be excluded from
tokenization. Not all token types will allow the end-user to specify these values. The Left and Right settings can be configured in
the Tokenize Options on the ESA Web UI

When processing input data where both Left and Right settings and Allow Short Data settings are applied, the input is validated
for the the Left and Right settings before the Allow Short Data settings are applied.

For more information about how left and right settings work together with short data settings, refer to the section Calculating
Token Length (Zero-Length Tokens).

3.3.4 Internal Initialization Vector (IV)

An Internal IV is used during the tokenization process to make it more difficult to detect patterns in multiple tokenized values and
thereby provide additional security.

Internal IV is automatically applied to the input value when the token element’s left and/or right properties are non-zero,
designating some characters to remain in the clear.

Data to tokenize can be logically divided into three components: left, middle, and right. If an IV is used, then the left and right
components are concatenated to form the IV. This IV is then added to the middle component before the value is tokenized.

Table 3-11: Examples of Tokenization with Internal IV

Token Properties Input Value Output Value Comments

Alpha Token

Left=1

Right=0

1Protegrity

2Protegrity

3Protegrity

1aOkCUXmhXC

2DeKeldVpKj

3hASBMvvfuL

Left=1 thus the first character in
the input value is not tokenized
but used as internal IV. For
each of three input values the
value ‘Protegrity’ is tokenized,
with internal IVs ‘1’, ‘2’ and ‘3’
respectively. Tokenized value is
different for all three cases.

Alpha Token

Left=2

Right=4

W2Protegrity2012

W2Protegrity2013

Q2Protegrity2013

W2NXgfOdLQEy2012

W2XdjFTIFQNC2013

Q2gWjpyMwvDJ2013

Left=2, Right=4 thus the first
2 and the last 4 characters
in the input value are not
tokenized but used as internal
IV. For each of three input
values the value ‘Protegrity’
is tokenized, with internal
IVs ‘W22012’, ‘W22013’ and
‘Q22013’ respectively. Tokenized
value is different for all three
cases.

Alpha Token

Left=0

Protegrity RlfZVOmhQD Left and Right are undefined thus
the internal IV is not used.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 26

Token Properties Input Value Output Value Comments

Right=0

3.3.5 Minimum and Maximum Input Length

The minimum and maximum input lengths are the boundaries that are used in input validation.

In Protegrity tokenization only one token type (Decimal) allows defining the Minimum and Maximum length of the token
element upon its creation. Some token types (Date and Datetime) have a fixed length. For the remainder, Minimum and
Maximum length depends on token type, tokenizer, length preservation, and short token setting.

The following table illustrates length settings by token type.

Table 3-12: Minimum and Maximum Input Length by Token Types

Token Type Tokenizer Preserves Length Allow Short Data Minimum Length Maximum Length

Numeric SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return input as
it is

3

No, generate error

No NA 1 3933

SLT_1_6

SLT_2_6*1

Yes Yes 1 4096

No, return input as
it is

6

No, generate error

No NA 1 3933

Integer SLT_1_3 Yes NA 2 8

Credit Card SLT_1_3

SLT_2_3

Yes NA 3 4096

SLT_1_6

SLT_2_6*1

Yes NA 6 4096

Alpha SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return input as
it is

3

No, generate error

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 27

Token Type Tokenizer Preserves Length Allow Short Data Minimum Length Maximum Length

No NA 1 40761

Upper-case Alpha SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return input as
it is

3

No, generate error

No NA 1 4049

Alpha-Numeric SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return input as
it is

3

No, generate error

No NA 1 4080

Upper Alpha-Numeric SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return input as
it is

3

No, generate error

No NA 1 4064

Lower ASCII SLT_1_3 Yes Yes 1 4096

No, return input as
it is

3

No, generate error

No NA 1 4086

Printable SLT_1_3 Yes Yes 1 4096

No, return input as
it is

3

No, generate error

No NA 1 4091

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 28

Token Type Tokenizer Preserves Length Allow Short Data Minimum Length Maximum Length

Date YYYY-MM-DD

Date DD/MM/YYYY

Date MM/DD/YYYY

SLT_1_3

SLT_2_3

SLT_1_6

SLT_2_6*

Yes NA 10 10

Datetime SLT_DATETIME Yes NA 10 29

Decimal SLT_6_DECIMAL No NA 1 36

Unicode SLT_1_3

SLT_2_3

No Yes 1 byte 4096 bytes

No, return input as
it is

3 bytes

No, generate error

Unicode Base64 SLT_1_3 No Yes*2 1 byte 4096 bytes

SLT_2_3 No, return input as
it is

3 byte

No, generate error

Unicode Gen2 SLT_1_3

SLT_X_1

Yes Yes 1 Code Points 4096 Code Points

No, return input as
it is

3 Code Points

No, generate error

Binary SLT_1_3

SLT_2_3

No NA 3 4095

Email SLT_1_3

SLT_2_3

Yes Yes 3 256

No, return input as
it is

5

No, generate error

No NA 3 256

Note:

*2 - If the input value for the protect or unprotect operation is between 1 character to 3 characters and the Allow Short Data setting is set to
Yes, then the protect or unprotect operation fails with an error message indicating the input data is too short.

Note:

• The minimum/maximum length means number of characters of a supported alphabet (thus, for alphanumeric tokens, an input value
consisting of one printable character of a non-supported alphabet, will not be tokenized).

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 29

• The minimum and maximum length for an integer is between 2 bytes to 8 bytes.

• The minimum and maximum lengths supported by the Integer token type for the Impala protector in the Big Data Protector are 1 and
10 respectively. The Impala protector supports only 4-byte integers.

• The minimum/maximum length validation on input data is done on the characters to tokenize.

• Left and right clear characters are not counted as well as any characters outside of the alphabet for the selected token type.

• NULL values are accepted but not tokenized.

• Email token minimum length in the table above means the length of the entire email.

• Maximum lengths of all tokens are limited to 256 characters for Protegrity protectors on z/OS.

• The newly created data elements using the SLT_2_6 tokenizer from v7.1 MR1 onwards are deployable to protectors with versions 7.1
MR1 and higher.

3.3.5.1 Calculating Token Length (Zero-Length Tokens)

If the input value does not contain characters that can be tokenized with the selected token type, then the characters not supported
by the token type will be treated as delimiters and left un-tokenized.

The number of characters to tokenize is calculated as described on the following image:

Figure 3-1: Number of characters to tokenize

If the input value does not contain characters to tokenize, then it is considered a zero-length token. The tokenization of an empty
input value will not produce an error during the tokenization, and input value will be returned as output.

Figure 3-2: Input value returned as a result of tokenization with zero-length token

If the input value has at least one character and short data tokenization is enabled, then the source data can be tokenized. If short
data tokenization is not enabled then as per the settings, either the source data can be returned as it is or an appropriate error
appears as a result of tokenization.

For more information on short data tokenization, refer to the section Short Data Tokenization.

Figure 3-3: Output returned when the input is too short

If the input value contains more than the maximum number of characters to tokenize, then the value to tokenize is considered too
long, and the appropriate error will appear as a result of tokenization.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 30

Figure 3-4: Error returned when the input is too long

If the input value contains enough characters to tokenize (between minimum and maximum settings), then the tokenization is
successful.

Figure 3-5: Tokenized value returned when the input is enough for tokenization

Table 3-13: Token Length Examples

Token Properties Input Value Output Value Comments

Numeric Token

Left/Right undefined

Allow Short Tokens=Yes

ab1cd ab6cd Non-numeric values are
considered as delimiters. Input
is tokenized as short data is
enabled and minimum length is 1
character.

Numeric Token

Left/Right undefined

Allow Short Tokens= No,
generate an error

ab1cd Error. Input too short. Non-numeric values are
considered as delimiters. Input
is short since short data is not
enabled and the minimum number
of characters to tokenize for this
token type is 3 characters.

Numeric Token

Left/Right undefined

Allow Short Tokens= No, return
input as it is

12 12 Input is returned as is as per the
settings for short data.

Numeric Token Left=2 Right=2 48ghdg83 48ghdg83 The input value is left unchanged
by the tokenization since it is
an empty value for tokenization
(left and right settings remove all
numeric characters).

Numeric Token Left=2 Right=2 4568 4568 The input value is left unchanged
by the tokenization since it is an
empty value for tokenization.

Numeric Token

Left/Right undefined

ab123cd ab857cd Input value has enough characters
for tokenization, only supported
by numeric token type values are
tokenized.

Alpha Numeric Token Left=5,
Right=0

345465 34546c Input is evaluated first for left and
right settings. Since left settings
are set to 5, the first five digits are
excluded and the sixth digit can

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 31

Token Properties Input Value Output Value Comments

Allow Short Tokens= yes be tokenized. As the Allow Short
Tokens is set as yes, the sixth digit
is tokenized.

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= no, generate
error

345465 error Input is evaluated first for left and
right settings. Since left settings
are set to 5, the first five digits are
excluded and the sixth digit can
be tokenized. As the Allow Short
Tokens is set as no, generate
error and the length of data to be
tokenized is less than 3, an Input
too short error is generated.

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= No, return
input as it is

345465 345465 Input is evaluated first for left and
right settings. Since left settings
are set to 5, the first five digits are
excluded and the sixth digit can
be tokenized. As the Allow Short
Tokens is set as No, return input
as it is and the length of data to be
tokenized is less than 3, the data is
passed as is.

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= yes

34546 34546 Input is evaluated first for left and
right settings. Since left settings
are set to 5 and the input is
five digits, no data exists to be
tokenized. As no data exists, it is
considered as a zero length token
and the input is passed as is.

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= no, generate
error

34546 34546

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= No, return
input as it is

34546 34546

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= yes

3454 error Input is evaluated first for left and
right settings. Since left settings
are set to 5 and the input is four
digits, the left and right settings
condition is not met. This results
in an Input too short error.Alpha Numeric Token Left=5,

Right=0

Allow Short Tokens= no, generate
error

3454 error

Alpha Numeric Token Left=5,
Right=0

Allow Short Tokens= No, return
input as it is

3454 error

3.3.6 Length Preserving

With Preserve Length flag enabled, the length of the input data and protected token value is the same.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 32

For data elements with Preserve Length flag available, you have an option to generate token values that are of the same length as
the input data.

Note: The Unicode Gen2 token element is Code Point length preserving based on the alphabet selected during data element creation.

As an extension to this flag, the Allow Short Data flag provides multiple options to manage short input data handling. If the
Preserve Length property is not selected, then short input can be extended up to the minimum length.

For more information about short data tokenization, refer to the section Short Data Tokenization.

The system always enforces a maximum length, whether length preservation is on or off.

If Preserve Length is not selected, then tokenized data may be longer than the input value up to +5%, or at least +1 symbol on a
very small initial value (1-2 symbols).

If Preserve Length is not selected, then:

• Out-of-alphabet characters could cause an error because they are not tokenized and they need to be put back into the correct
position when the data is detokenized. When length preservation is not selected, position information is lost.

• For database protection, column length of the resulting protected table should be bigger than length of the column to tokenize
in the initial table. This will allow inserting tokenized data during protection when tokenized data is longer than the input
data.

3.3.7 Short Data Tokenization

The use of short data input supports tokenization, if the source data length to be tokenized is less than the limit for tokenizable
characters or bytes. When using tokenizers, such as, SLT_1_3, SLT_2_3, and SLT_X_1, the limit for tokenizable characters or
bytes is three. When using tokenizers, such as, SLT_1_6 and SLT_2_6, the limit for tokenizable characters or bytes is six.

The possible flag values for short data tokenization are described in the following table.

Table 3-14: Short tokens flag values

Short Token flag value Action

No, generate error Do not tokenize the short input but generate an error code and an audit
log.

Yes Tokenize the data if the input is short.

No, return input as it is Do not tokenize the short input but return the input as it is.

The following tokens support short data tokenization:

• Numeric (0-9)

• Alpha (a-z, A-Z)

• Upper-case Alpha (A-Z)

• Alpha-Numeric (0-9, a-z, A-Z)

• Upper-case Alpha-Numeric (0-9, A-Z)

• Printable

• Lower ASCII

• Email

• Unicode

• Unicode Base64

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 33

• Unicode Gen2

Important: Since there is no chaining for short input data, tokenization can be at risk. User can easily guess the lookup table and the
original data by tokenizing some input data.

It is recommended that careful consideration is given to employ short data tokenization. If possible, short data input must be avoided.

For more information about the maximum length setting for non-length-preserving token elements, refer to table Minimum and
Maximum Input Length by Token Types.

3.3.8 Case-Preserving and Position-Preserving Tokenization

If you are working with the Alpha-Numeric (0-9, a-z, A-Z) token type and the SLT_2_3 tokenizer, then you can specify
additional tokenization options for case preservation and position preservation. This section explains these additional tokenization
options.

Warning:

Case-Preserving and Position-Preserving tokenization was designed to support very specific business requirements. There is a trade-off
between those requirements and the cryptographic strength of the tokens. When preserving the case and position of Alpha-Numeric
characters, some information may be leaked through the tokenized value. In addition, depending on the length of the Alpha and Numeric
substrings, tokens may suffer the same weaknesses as Short Tokens, as described in the section Short Data Tokenization. Generally, this
method should not be used for most use cases. Before using this method, contact Protegrity to ensure that the risks are fully understood.

3.3.8.1 Case-Preserving Tokenization

When working with data that is received from multiple sources, the data can contain different casing properties. The data
processing stage makes the casing consistent prior to distributing the data to additional systems.

If tokenization is performed prior to the data processing stage, then it results in tokens that differ in its casing properties as per the
non-processed data.

To ensure that the data casing properties are preserved when tokenizing the non-processed data, an additional tokenization option
is provided to preserve the case for the Alpha-Numeric (0-9, a-z, A-Z) token type. The casing of the alphabets in the tokenized
value matches the casing of the alphabets in the input value.

Note:

You can specify the case-preserving tokenization option when using the SLT_2_3 tokenizer and Alpha-Numeric (0-9, a-z, A-Z) token type
only.

If you select the Preserve Case property on the ESA Web UI, then the Preserve Position property is also selected, by default. Hence, the
position of the alphabets and numbers is preserved along with the casing of the alphabets in the output tokenized value.

If you are selecting the Preserve Case or Preserve Position property on the ESA Web UI, then the following additional properties are set:

• The Preserve Length property is enabled and Allow Short Data property is set to Yes, by default. These two properties are not
modifiable.

• The retention of characters or digits from the left and the right are disabled, by default. The From Left and From Right properties are
both set to zero.

For more information about specifying the case-preserving tokenization option for the Alpha-Numeric (0-9, a-z, A-Z) token type,
refer to the section Creating Case-Preserving and Position-Preserving Data Element in the Policy Management Guide 9.2.0.0.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 34

The following table provides some examples for the case-preserving tokenization option.

Table 3-15: Case-Preserving Tokenization Examples

Input Value Tokenized Value Using the Case-Preserving Tokenization

Dan123 Abc567

DAn123 ABc567

daN123 abC567

3.3.8.2 Position-Preserving Tokenization

The position-preserving tokenization preserves the position of the alphabets and numbers when tokenizing the alpha-numeric
values. The alphabetic and numeric positions in the tokenized value matches the alphabetic and numeric positions in the input
value.

Note:

You can specify the position-preserving tokenization option when using the SLT_2_3 tokenizer and Alpha-Numeric (0-9, a-z, A-Z) token
type only.

If you are selecting the Preserve Case or Preserve Position property, then the following additional properties are set:

• The Preserve Length property is enabled and Allow Short Data property is set to Yes, by default. These two properties are not
modifiable.

• The retention of characters or digits from the left and the right are disabled, by default. The From Left and From Right properties are
both set to zero.

For more information about specifying the position-preserving tokenization option for the Alpha-Numeric (0-9, a-z, A-Z) token
type, refer to the section Creating Case-Preserving and Position-Preserving Data Element in the Policy Management Guide
9.2.0.0.

The following table provides some examples for the position-preserving tokenization option.

Table 3-16: Position-Preserving Tokenization Examples

Input Tokenized Value Using the Position-Preserving Tokenization

Dan123 pXz789

DAn123 Abp708

daN123 Axz642

3.3.9 External Initialization Vector (IV)

External IV feature provides an additional level of security, by adding the possibility to have different tokenized results across
protectors for the same input data and token element, depending on the External IV set on each protector.

3.3.9.1 Tokenization model with External IV

The External IV value is set as a new parameter when calling Application Protector from the client application.

To enforce additional security, the External IV value is not used “as is” when applied to a token value. Instead it is being
tokenized using a specific internal token element.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 35

The following example explains how the tokenization is performed with the External IV defined. As mentioned before, the main
characteristic of the External IV feature is obtaining different outputs for the same input. To have different outputs, you need to
specify different IVs.

Note: External IV is used, prior to protection, as input to modify the data to protect. The external IV is ignored when using encryption.

Figure 3-6: External IV in the Credit Card tokenization process

3.3.9.2 External IV Tokenization Properties

The External IV is supported by all token types, except Date, Datetime, and Decimal tokens.

The tokenization with the External IV is done only if the IV is specified during the protect operation through the end user API.
When performing unprotect and re-protect operations, the same IV value used for protection must be identified.

If External IV is not provided in either protect or unprotect function call, then the input is tokenized as-is without any IV.

The External IV value has the following properties:

• Supports ASCII and Unicode characters

• Minimum 1 byte for the input, but 2 bytes is the recommended length to create unique Token elements using External IV

• Maximum 256 bytes for the input

• Empty and NULL strings are not supported as External IV value (these strings will be ignored and tokenization will be
performed as if External IV was not used).

Here is an example of the tokenized input value with the External IV for a Numeric token:

Table 3-17: Example-External IV for a Numeric token

Input Value External IV Output Value Comments

1234567890 None 5108318538 External IV is not applied.

1234567890 1234 0442985096 Output values differ because different external IVs were applied.

12 1197578213

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 36

Input Value External IV Output Value Comments

abc 9423146024

3.3.10 Truncating White Spaces

If you have fixed length fields or columns and the input data is shorter than the length of the field, the data may be appended with
some trailing or/and leading white spaces. In such situations, the trailing and/or leading white spaces will be considered during
Tokenization and will impact the tokenization results.

For instance, consider a scenario where the name Hultgren Caylor is stored in a Hive Char(30) column.

As the length of the data is less than 30 characters, trailing white spaces are appended to it. In this case, assume that we need
to protect this column with a data element that preserves the first and last character (L=1, R-1). Now with this setting, the
expectation is to preserve character H at the start and the character r at the end, in the protected value output. However, the actual
data has trailing white spaces, which means, the output will contain the character H at the start and character “ “ (whitespace) at
the end, which is unnecessary. The final protected output would generate a different token due to the unnecessary trailing white
space.

It is therefore recommended to truncate any unnecessary trailing or/and leading white spaces, before sending the data to the
respective Protect, Unprotect, or Reprotect UDFs. This ensures that only the actual data is considered in the tokenization process,
and any unnecessary trailing or/and leading white spaces are not considered.

In addition, it is important to follow a consistent approach for truncating the white spaces across all operations, such as, Protect,
Unprotect, Reprotect. For instance, if we have truncated unnecessary trailing white spaces from the input before the Protect
operation, then the same logic of truncating white spaces from the input, during Unprotect and Reprotect operations needs to be
followed.

3.4 Tokenization Types
This section describes the tokenization type properties for different protectors. It also provides some examples for tokenized
values for different token types.

3.4.1 Numeric (0-9)

The Numeric token type tokenizes digits from 0 to 9.

Table 3-18: Numeric Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Numeric

Token type and Format Digits 0 through 9

Tokenizer Length Preservation Allow Short
Data

Minimu
m
Length

Maximum Length

SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return input
as it is

3

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 37

Tokenization Type Properties Settings

No, generate
error

No NA 1 3933

SLT_1_6

SLT_2_6*4

Yes Yes 1 4096

No, return input
as it is

6

No, generate
error

No NA 1 3933

Possibility to set Minimum/
maximum length

No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero

External IV Yes

Supported input data types (by
Application Protectors) *1

AP Python*3 AP Java *3 AP C*3 AP
NodeJS*3

AP .Net*3 AP Go*3

STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

BYTE[]

STRING

BYTE[]

STRING

[]BYTE

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

VARCHAR
2

CHAR

VARCHAR CHAR

Supported input data types (by
MPP DB Protectors)

Teradata GPDB IBM Netezza

VARCHAR

LATIN

CHAR LATIN

VARCHAR VARCHAR

Supported input data types (for Big
Data Protectors) *1

MapReduce *2 Hive Pig HBa
se *2

Impal
a

Spark
*2

Spark SQL Presto

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 38

Tokenization Type Properties Settings

BYTE[] CHAR*5

STRING

CHAR
ARRA
Y

BYT
E[]

STRI
NG

BYTE[
]

STRIN
G

STRING VARC
HAR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties None

Note:
*1– If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*4 – The newly created data elements using the SLT_2_6 tokenizer from v7.1 MR1 onwards are deployable to protectors with versions 7.1
MR1 and higher.

*5 – If you are using the Char tokenization UDFs in Hive, then ensure that the data elements have length preservation selected. In Char
tokenization UDFs, using data elements without length preservation selected, is not supported.

The following table shows examples of the way in which a value will be tokenized with the Numeric token.

Table 3-19: Examples - Numeric tokenization values

Input Value Tokenized Value Comments

123 977 Numeric, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes The value has minimum
length for SLT_1_3 tokenizer.

1 555241 Numeric, SLT_1_6, Left=0, Right=0, Length
Preservation=No The value is padded up to
6 characters which is minimum length for
SLT_1_6 tokenizer.

-7634.119 -4306.861 Numeric, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes Decimal point and sign are
treated as delimiters and not tokenized.

12+38=50 98+24=62 Numeric, SLT_2_6, Left=0, Right=0, Length
Preservation=Yes Arithmetic signs are treated
as delimiters and not tokenized.

704-BBJ 134-BBJ Numeric, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes Alpha characters are treated
as delimiters and not tokenized.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 39

Input Value Tokenized Value Comments

704-BBJ Error. Input too short. Numeric, SLT_2_6, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=No,
generate error

Input value has only three numeric characters
to tokenize, which is short for SLT_2_6
tokenizer when Length Preservation=Yes and
Allow Short Data=No, generate error.

704-BBJ

704356

704-BBJ

134432

Numeric, SLT_2_6, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=No,
return input as it is

If the input value has less than six characters
to tokenize, then it is returned as is else it is
tokenized.

704-BBJ 134-BBJ Numeric, SLT_2_6, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=Yes

Input value has three numeric characters
to tokenize, which meets minimum length
requirement for SLT_2_6 tokenizer when
Length Preservation=Yes and Allow Short
Data=Yes.

704 134 Numeric, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=No,
return input as it is

If the input value has less than three characters
to tokenize, then it is returned as is else it is
tokenized.

704-BBJ 669-BBJ642 Numeric, SLT_1_6, Left=0, Right=0, Length
Preservation=No Input value is padded up to
6 characters because Length Preservation=No.
Alpha characters are treated as delimiters and
not tokenized.

704-BBJ 764-6BBJ Numeric, SLT_2_3, Left=1, Right=3, Length
Preservation=No 1 character from left and
3 from right are left in clear. Two numeric
characters left for tokenization ‘04’ were
padded and tokenized as ‘646’.

3.4.2 Integer (0-9)

The Integer token type tokenizes 2, 4, or 8 byte size integers.

Table 3-20: Integer Tokenization Type properties for different Protectors

Tokenization
Type
Properties

Settings

Name Integer

Token type
and Format

2, 4, or 8 byte size integers

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 40

Tokenization
Type
Properties

Settings

Tokenizer Length Preservation

SLT_1_3 Yes

Possibility to
set Minimum/
maximum
length

No

Left/Right
settings

No

Internal IV No

External IV Yes

Supported
input data
types (by
Application
Protector)*1

AP C*3 AP Java*3 AP
Python*3

AP .Net*3 AP Go*3 AP NodeJS*3

BYTE[] SHORT:
2bytes

INT: 4 bytes

LONG: 8
bytes

INT: 4
bytes and 8
bytes

STRING

BYTE[]

SHORT:
2bytes

INT: 4 bytes

LONG: 8
bytes

STRING

BYTE[]

Supported
input data
types (by DB
Protectors)

MSSQL Server Oracle DB/2

INTEGER INTEGER INTEGER

SMALLINT

BIGINT

Supported
input data
types (by
MPP DB
Protectors)

Teradata Greenplum IBM Netezza

INTEGER

BIGINT

INTEGER INTEGER

Supported
input Presto
data types (for
Big Data
Protectors)*1

MapReduce*2 Hive Pig HBase*2 Impa
la

Spark*2 Spark SQL Presto

INT: 4 bytes

LONG: 8
bytes

INT:
4
bytes

BIGI
NT: 8
bytes

IN
T: 4
byt
es

BYTE[] INT:
4
bytes

SHORT: 2
bytes

INT: 4 bytes

LONG: 8
bytes

SHORT: 2 bytes

INT: 4 bytes

LONG: 8 bytes

SMALL INT: 2
bytes

INT: 4 bytes

BIG INT: 8 bytes

Return of
Protected
value

Yes

Supported in
Protegrity
releases

6.6.x – 9.x.x.x

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 41

Tokenization
Type
Properties

Settings

Token specific
properties

Size 2, 4, or 8 bytes

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Protegrity AP Java, Protegrity AP Python, and Protegrity AP Golang protectors only support bytes converted from the string data
type. If any other data type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input
and provides byte as output, then data corruption might occur.

*4 – The integer token type with 2 bytes as input is supported for the AP Python. An additional parameter - int_size=2, needs to be
passed to perform the protect, unprotect, or reportect operation. For a bulk call to the protect, unprotect, or reprotect APIs, the protected,
unprotected, or reprotected data and the success return code, which is (6 for successful protect operation), (8 for successful unprotect
operation), and (50 for successful reprotect operation) are returned. For a single call to the protect, unprotect, or reprotect APIs, the
protected, uprotected, or reprotected data is returned.

*5 - If the user passes 4-byte integer (values ranging from -2,147,483,648 to +2,147,483,647) as data and uses the 8-byte Integer token type
data element as input for the protect, unprotect, or reprotect APIs, then the data protection operation will not be successful. For a Bulk call
using the protect, unprotect, and reprotect APIs, the error code, 44, appears. For a single call using the protect, unprotect, and reprotect
APIs, an exception will be thrown and the error message, "44, Content of input data is not valid" appears.

Note:

The z/OS Database protectors, FIELDPROC and UDFs, do not support BIGINT.

The following table shows examples of the way in which a value will be tokenized with the Integer token.

Table 3-21: Examples - Integer tokenization values

Input Value Tokenized Value Comments

12 31345 Integer, SLT_1_3, Left=0, Right=0, Length Preservation=Yes

3 1465 For 2 bytes, the values can range from -32768 to 32767.

3 782939681 For 4 bytes, the values can range from -2147483648 to 2147483647.

3 7268379031142372719 For 8 bytes, the value range can range from -9223372036854775808 to
9223372036854775807.

Note:

The pty.ins_integer UDF in the Oracle, Teradata, and Impala Protectors, supports input data length of 4 bytes only. For 2 bytes, the
following error is returned: Invalid input size.

3.4.3 Credit Card

Our Credit Card token type helps maintain transparency, and also provides a way to clearly distinguish a token from the real
value, which is a recommendation of the PCI DSS.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 42

The Credit Card token type supports only numeric input (no separators are allowed as input).

Table 3-22: Credit Card Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Credit Card

Token type and Format Digits 0 through 9

(no separators are allowed as input)

Tokenizer Length Preservation Minimum
Length

Maximum Length

SLT_1_3

SLT_2_3

Yes 3 4096

SLT_1_6

SLT_2_6*4

Yes 6 4096

Possibility to set Minimum/
maximum length

No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero

External IV Yes

Supported input data types (by
Application Protectors) *1

AP Python *3 AP Java *3 AP C*3 AP
NodeJS*3

AP .Net*3 AP Go*3

STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

BYTE[]

STRING

BYTE[]

STRING

[]BYTE

Supported input data types (by
DB Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data types (by
MPP DB Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

VARCHAR VARCHAR

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 43

Tokenization Type Properties Settings

Supported input data types (for
Big Data Protectors) *1

MapReduce
*2

Hive Pig HBas
e *2

Impala Spark *2 Spa
rk
SQL

Presto

BYTE[] STRI
NG

CHAR
ARRA
Y

BYT
E[]

STRIN
G

BYTE[]

STRING

STR
ING

VARCHAR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties Invalid LUHN digit

Invalid card type

Alphabetic indicator

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*4 – The newly created data elements using the SLT_2_6 tokenizer from v7.1 Maintenance Release 1 (MR1) onwards are deployable to
protectors with versions 7.1 MR1 and higher.

The credit card number real value is distinguished from the tokenized value based on the token value validation properties.

Table 3-23: Specific Properties of the Credit Card Token Type

Credit Card token value
validation properties

Left Right Comments Validation properties
compatibility

Invalid Luhn Checksum
(On/Off)

yes yes Right characters to be
left in the clear can
be specified (usually, 4
characters).

For more information
about the Invalid Luhn
Checksum property, refer
to section Invalid Luhn
Checksum.

Can be used together

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 44

Credit Card token value
validation properties

Left Right Comments Validation properties
compatibility

Invalid Card Type (On/Off) 0 yes Left cannot be specified, it
is zero by default.

For more information
about the Invalid Card
Type property, refer to
section Invalid Card Type.

Alphabetic Indicator (On/
Off)

yes yes The indicator will be in
the token, which means
that left and right can be
specified.

For more information
about the Alphabetic
Indicator property, refer
to section Alphabetic
Indicator.

Can be used only
separately from the other
token validation properties

Note: You can create a Credit Card token element and select no validation property for it. In that case, the Credit Card token element will
be treated the same as a Numeric token with the exception that additional checks will be made on the input explained in the Credit Card
token general properties column in the table above.

Note:

If you are enabling the Credit Card token properties, such as, Invalid LUHN checksum and Invalid Card Type, with the SLT Tokenizers,
then refer to section Credit Card Properties with SLT Tokenizers.

3.4.3.1 Invalid Luhn Checksum

If you enable Invalid Luhn Checksum token validation, then you must use valid credit cards otherwise tokenization will be denied
for an invalid credit card number.

A valid credit card has a valid Luhn checksum. Upon tokenization the tokenized value will have an invalid Luhn checksum. Here
is an example of the tokenized credit card with the invalid Luhn digit.

Table 3-24: Credit Card Number with Luhn Checksum Examples

Credit Card Number Tokenized Value Comments

4067604564321453 Token is not generated due to invalid input
value. Error is returned.

The input value contains invalid Luhn
checksum. The value cannot be tokenized
with Luhn enabled.

4067604564321454 2009071778438613 The Luhn in the input value is correct,
the value is tokenized. Tokenized value has
invalid Luhn checksum.

3.4.3.2 Invalid Card Type

When Invalid Card Type is enabled, token values will not begin with the digits that real credit card numbers begin with.

The first digit in a real credit card number is the Major Industry Identifier. Thus, digits 3,4,5,6 and 0 can be the first digits of the
real credit card number which will be substituted during tokenization (refer to the following table).

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 45

Table 3-25: Real Credit Card Values with Tokenized Values

Real credit card
value

3 4 5 6 0

Tokenized value 2 7 8 9 1

Here is an example of the tokenized credit card with the invalid credit card type:

Table 3-26: Credit Card Number with Tokenized Values - Examples

Credit Card Number Tokenized Value Comments

4067604564321454 7335610268467066 The credit card type is valid, the tokenization
is successful.

2067604564321454 Token is not generated due to invalid input
value. Error is returned.

The credit card type is invalid since the
first digit of the value (‘2’) does not belong
to a real credit card. The value cannot be
tokenized.

3.4.3.3 Alphabetic Indicator

If you enable Alphabetic Indicator validation, then the resulting token value will have one alphabetic character.

You will need to choose the position of the alphabetic character before tokenizing a credit card number otherwise the resulting
token will have no alphabetic indicator.

The alphabetic indicator will substitute the tokenized value according to the following rule:

Table 3-27: Alphabet Indicator with Tokenized Digits

Tokenized
digit

0 1 2 3 4 5 6 7 8 9

Alphabetic
indicator

A B C D E F G H I J

In the following table the Visa Card Number “4067604564321454” has been tokenized with a value of “7594107411315001” and
the tokenized value in a selected position is substituted with an alphabetic character.

Table 3-28: Credit Card Tokenization Examples

Credit Card Number (Input
Value)

Position Tokenized Value Comments

4067604564321454 - 7594107411315001 No substitution since the position
is undefined.

4067604564321454 14 7594107411315A01 Digit “0” is substituted with
character “A” at position 14.

3.4.3.4 Credit Card Properties with SLT Tokenizers

This section helps you to understand the minimum data length required for the tokenization, when using the Credit Card token
properties in combination with the SLT Tokenizers.

If you are enabling the Credit Card token properties, such as, Invalid LUHN checksum and Invalid Card Type, for tokenization
of the input data, then you must also select the appropriate SLT Tokenizer to ensure the minimum data length is available to
successfully perform the tokenization.

The following table represents the minimum data length required for tokenization as per the usage of Credit Card token properties
with the SLT Tokenizers.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 46

Table 3-29: Minimum Data Length - Credit Card Token Properties with SLT Tokenizers

Enabled Credit Card Token Property Minimum Data Length (in digits) Required for Tokenization

SLT_1_3/SLT_2_3 SLT_1_6/SLT_2_6

Invalid LUHN Checksum 4 7

Invalid Card Type 4 7

Invalid LUHN Checksum and Invalid Card Type 5 8

3.4.4 Alpha (A-Z)

The Alpha token type tokenizes both uppercase and lowercase letters.

Table 3-30: Alpha Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Alpha

Token type and Format Lowercase letters a through z

Uppercase letters A through Z

Tokenizer Lengt
h
Prese
rvati
on

Allow
Short
Data

Minimum Length Maximum Length

SLT_1_3

SLT_2_3

Yes Yes 1 4096

No,
return
input as
it is

3

No,
generate
error

No NA 1 4076 *3

Possibility to set Minimum/ maximum
length

No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero

External IV Yes

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 47

Tokenization Type Properties Settings

Supported input data types (by
Application Protectors) *1

AP Python
*4

AP
Java*4

AP .Net*4 AP
NodeJS*4

AP C*4 AP Go*4

BYTES

STRING

BYTE[]

CHAR[]

STRING

STRING

BYTE[]

STRING

BYTE[]

BYTE[] []BYTE

STRING

Supported input data types (by DB
Protectors)

MSSQL
Server

Oracle DB/2

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data types (by MPP DB
Protectors)

Teradata GPDB IBM Netezza

VARCHAR
LATIN

CHAR
LATIN

VARCHAR VARCHAR

Supported input data types (for Big Data
Protectors) *1

MapRe
duce *2

Hive Pig HBase *2 Impa
la

Spa
rk
*2

Spa
rk
SQ
L

Presto

BYTE[] CHAR
*5

STRIN
G

CHA
RAR
RAY

BYTE[] STRI
NG

BY
TE[
]

ST
RIN
G

ST
RI
NG

VARCHA
R

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties None

Note:
*1– If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 48

*2– The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Alpha token element for AP-Java protector with tokenizer SLT_1_3 and SLT_2_3 that has no length preservation has the
maximum length of the protected data as 4080 bytes and 4082 bytes respectively.

*4 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*5 – If you are using the Char tokenization UDFs in Hive, then ensure that the data elements have length preservation selected. In Char
tokenization UDFs, using data elements without length preservation selected, is not supported.

The following table shows examples of the way in which a value will be tokenized with the Alpha token.

Table 3-31: Examples - Numeric tokenization values

Input Value Tokenized Value Comments

abc nvr Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=Yes

The value has minimum length for SLT_1_3 tokenizer.

MA TGi Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=No

The value is padded up to 3 characters which is minimum length for SLT_2_3 tokenizer.

MA Error. Input too short. Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow Short Data=No,
generate error

Input value has only two alpha characters to tokenize, which is short for SLT_1_3
tokenizer when Length Preservation=Yes and Allow Short Data=No, generate error.

MA

MAC

MA

TGH

Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow Short Data=No,
return input as it is

If the input value has less than three characters to tokenize, then it is returned as is else it
is tokenized.

MA TG Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow Short Data=Yes

Input value has only two alpha characters, which meets minimum length requirement for
SLT_1_3 tokenizer when Length Preservation=Yes and Allow Short Data=Yes.

131 Summer Street,
Bridgewater

131 VDYgAK q

vMDUn,
zAEXmwqWYNQG

Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=No

Numeric characters, spaces and comma are treated as delimiters and not tokenized.
Output value is longer than initial value.

Albert Einstein SldGzm OOCTzSFo Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=Yes

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 49

Input Value Tokenized Value Comments

Space is treated as delimiters and not tokenized. Output value is the same length as initial
value.

Albert Einstein AjAkqD vvBFYLdo Alpha, SLT_1_3, Left=1, Right=0, Length Preservation=Yes

1 character from left remains in the clear.

3.4.5 Upper-case Alpha (A-Z)

The Upper-case Alpha token type tokenizes all alphabetic symbols as uppercase. After de-tokenization, all alphabetic symbols are
returned as uppercase. This means that initial and detokenized values would not match if the input contains lowercase letters.

Note: In z/OS, the Upper-case Alpha token type considers lowercase characters as delimiter. It is recommended not to use Upper-case
Alpha token type for tokenizing and de-tokenizing operations across different platforms.

Table 3-32: Upper-case Alpha Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Upper-case Alpha

Token type and Format Uppercase letters A through Z

Tokenizer Lengt
h
Prese
rvati
on

Allow
Short
Data

Minimum Length Maximum Length

SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return
input as it
is

3

No,
generate
error

No NA 1 4049

Possibility to set Minimum/ maximum
length

No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 50

Tokenization Type Properties Settings

External IV Yes

Supported input data types (by
Application Protectors) *1

AP Python
*3

AP Java*3 AP .Net*3 AP
NodeJS*3

AP C*3 AP Go*3

BYTES

STRING

BYTE[]

CHAR[]

STRING

STRING

BYTE[]

STRING

BYTE[]

BYTE[] []BYTE

STRING

Supported input data types (by DB
Protectors)

MSSQL
Server

Oracle DB/2

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data types (by MPP DB
Protectors)

Teradata GPDB IBM Netezza

VARCHAR
LATIN

CHAR
LATIN

VARCHAR VARCHAR

Supported input data types (for Big Data
Protectors) *1

MapRe
duce *2

Hive Pig HBase *2 Imp
ala

Spa
rk
*2

Spa
rk
SQ
L

Presto

BYTE[] CHAR*
4

STRIN
G

CHA
RAR
RAY

BYTE[] STRI
NG

BY
TE[
]

ST
RIN
G

ST
RI
NG

VARCHA
R

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties Lower case characters are accepted in the input but they will be converted to upper-
case in output value

Note:

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 51

*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If int, short,
or long format data is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and
provides byte as output, then data corruption might occur.

*4 – If you are using the Char tokenization UDFs in Hive, then ensure that the data elements have length preservation selected. In Char
tokenization UDFs, using data elements without length preservation selected, is not supported.

The following table shows examples of the way in which a value will be tokenized with the Upper-case Alpha token.

Table 3-33: Examples - Upper Case Alpha tokenization values

Input Value Tokenized Value Comments

abc OIM Upper-case Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=Yes

The value has minimum length for SLT_2_3 tokenizer.

Lowercase characters in the input are converted to uppercase in output. De-tokenization
will return ‘ABC’.

NY ZIZ Upper-case Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=No

The value is padded up to 3 characters which is minimum length for SLT_1_3 tokenizer.

NY Error. Input too short. Upper-case Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=Yes, Allow Short
Data=No, generate error

Input value has only two alpha characters to tokenize, which is short for SLT_2_3
tokenizer when Length Preservation=Yes and Allow Short Data=No, generate error.

NY

NYA

NY

ZIO

Upper-case Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=Yes, Allow Short
Data=No, return input as it is

If the input value has less than three characters to tokenize, then it is returned as is else it
is tokenized.

NY ZI Upper-case Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=Yes, Allow Short
Data=Yes

Input value has only two alpha characters to tokenize, which meets minimum length
requirement for SLT_2_3 tokenizer when Length Preservation=Yes and Allow Short
Data=Yes.

131 Summer Street,
Bridgewater

131 ZBXDPW G

FYTZP,
CRTTPXPLYGCU

Upper-case Alpha, SLT_1_3, Left=0, Right=0, Length Preservation=No

Numeric characters, spaces and comma are treated as delimiters and not tokenized.
Output value is longer than initial value.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 52

Input Value Tokenized Value Comments

Albert Einstein AOALXO POHLFHMU Upper-case Alpha, SLT_2_3, Left=0, Right=0, Length Preservation=Yes

Space is treated as delimiters and not tokenized. Output value is the same length as initial
value.

704-BBJ 704-GTU Upper-case Alpha, SLT_1_3, Left=3, Right=0, Length Preservation=Yes

3 characters from left are left in clear. Dash is treated as delimiter.

3.4.6 Alpha-Numeric (0-9, a-z, A-Z)

The Alpha-numeric token type tokenizes all alphabetic symbols (both lowercase and uppercase letters), as well as digits from 0 to
9.

Table 3-34: Alpha-Numeric Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Alpha-Numeric

Token type and Format Digits 0 through 9

Lowercase letters a through z

Uppercase letters A through Z

Tokenizer Length
Preservati
on

Allow
Short Data

Minimum Length Maximum Length

SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return
input as it is

3

No,
generate
error

No NA 1 4080

Preserve Case Yes, if SLT_2_3 tokenizer is selected

Note:

If you are selecting the Preserve Case or Preserve Position property on the ESA Web UI, then the
Preserve Length property is enabled and Allow Short Data property is set to Yes, by default. In
addition, these two properties are not modifiable.

Preserve Position

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 53

Tokenization Type Properties Settings

Possibility to set Minimum/
maximum length

No

Left/Right settings Yes

Note:

If you are selecting the Preserve Case or Preserve Position property on the ESA Web UI, then the
retention of characters or digits from the left and the right are disabled, by default. In addition, the
From Left and From Right properties are both set to zero.

Internal IV Yes, if Left/Right settings are non-zero

Note:

If you are selecting the Preserve Case or Preserve Position property on the ESA Web UI, then the
alphabetic part of the input value is applied as an internal IV to the numeric part of the input value
prior to tokenization.

External IV Yes

Note:

If you are selecting the Preserve Case or Preserve Position property on the ESA Web UI, then the
external IV property is not supported.

Supported input data types (by
Application Protectors) *1

AP Python *3 AP Java *3 AP .Net*3 AP
NodeJS*3

AP C*3 AP Go*3

STRING

BYTES

STRING

CHAR[]

BYTE[]

STRING

BYTE[]

STRING

BYTE[]

BYTE[] STRING

[]BYTE

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

VARCH
AR2

CHAR

VARCHAR
CHAR

Supported input data types (by MPP DB
Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

VARCH
AR

VARCHAR

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 54

Tokenization Type Properties Settings

Supported input data types (for
Big Data Protectors) *1

MapR
educe
*2

Hive Pig HBas
e *2

Impala Spark *2 Spar
k
SQL

Presto

BYTE[
]

CHAR*4

STRING

CHAR
ARRA
Y

BYT
E[]

STRING BYTE[]

STRING

STR
ING

VARCHAR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties None

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*4 – If you are using the Char tokenization UDFs in Hive, then ensure that the data elements have length preservation selected. In Char
tokenization UDFs, using data elements without length preservation selected, is not supported.

The following table shows examples of the way in which a value will be tokenized with the Alpha-Numeric token.

Table 3-35: Tokenization for Alpha-Numeric Values

Input Value Tokenized Value Comments

123 sQO Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes

Input is numeric but tokenized value contains uppercase and lowercase alpha characters.

NY 1DT Alpha-Numeric, SLT_2_3, Left=0, Right=0, Length Preservation=No

The value is padded up to 3 characters which is minimum length for SLT_2_3 tokenizer.

j1 4t Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow Short
Data=Yes

The minimum length meets the requirement for SLT_1_3 tokenizer when Length
Preservation=Yes and Allow Short Data=Yes.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 55

Input Value Tokenized Value Comments

j1 Error. Input too short. Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow Short
Data=No, generate error

The input has two characters to tokenize, which is short for SLT_1_3 tokenizer when
Length Preservation=Yes and Allow Short Data=No, generate error.

j1

j1Y

j1

4tD

Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow Short
Data=No, return input as it is

If the input value has less than three characters to tokenize, then it is returned as is else it
is tokenized.

131 Summer Street,
Bridgewater

ikC ejCxxp kLa

2ZZ, 5x8K2IMubcn

Alpha-Numeric, SLT_2_3, Left=0, Right=0, Length Preservation=No

Spaces and comma are treated as delimiters and not tokenized.

704-BBJ jf7-oVY Alpha-Numeric, SLT_1_3, Left=3, Right=0, Length Preservation=Yes

Dash is treated as delimiter. The rest of value is tokenized.

704-BBJ uHq-fTr Alpha-Numeric, SLT_2_3, Left=3, Right=0, Length Preservation=Yes

Dash is treated as delimiter. The rest of value is tokenized.

Protegrity2012 Pr3CYMPilr9n12 Alpha-Numeric, SLT_1_3, Left=2, Right=2, Length Preservation=Yes

2 characters from left and 2 characters from right are left in clear. The rest of value is
tokenized.

3.4.7 Upper Alpha-Numeric (0-9, A-Z)

The Upper Alpha-Numeric token type tokenizes uppercase letters A through Z and digits 0 to 9.

Note: In z/OS platform, the Upper Alpha-Numeric token type considers lowercase characters as delimiter. It is recommended not to use
Upper Alpha-Numeric token type for tokenizing and de-tokenizing operations across different platforms.

Table 3-36: Upper Alpha-Numeric Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Upper Alpha-Numeric

Token type and Format Digits 0 through 9

Uppercase letters A through Z

Tokenizer Length
Preservatio
n

Allow
Short Data

Minimum Length Maximum Length

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 56

Tokenization Type Properties Settings

SLT_1_3

SLT_2_3

Yes Yes 1 4096

No, return
input as it
is

3

No,
generate
error

No NA 1 4064

Possibility to set Minimum/ maximum
length

No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero

External IV Yes

Supported input data types (by
Application Protectors) *1

AP Python *3 AP
Java*3

AP .Net*

3
AP
NodeJS*

3

AP C*3 AP Go*3

STRING

BYTES

STRIN
G

CHAR[
]

BYTE[
]

STRING

BYTE[]

STRING

BYTE[]

BYTE[] STRING

[]BYTE

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data types (by MPP
DB Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

VARCHAR VARCHAR

Supported input data types (for Big
Data Protectors) *1

MapRedu
ce *2

Hi
ve

Pig H
Ba
se
*2

Impala Spark *2 Spar
k
SQL

Presto

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 57

Tokenization Type Properties Settings

BYTE[] C
H
A
R*

4

ST
RI
N
G

CHA
RAR
RAY

B
Y
T
E[
]

STRING BYTE[]

STRING

STRI
NG

VARCHAR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties Lower case characters are accepted in the input but they will be converted to upper-case in output
value.

Note:
*1– If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2– The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3– The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*4 – If you are using the Char tokenization UDFs in Hive, then ensure that the data elements have length preservation selected. In Char
tokenization UDFs, using data elements without length preservation selected, is not supported.

The following table shows examples of the way in which a value will be tokenized with the Upper Alpha-Numeric token.

Table 3-37: Tokenization for Upper-case Alpha-Numeric Values

Input Value Tokenized Value Comments

123 STD Upper Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes

Input is numeric but tokenized value contains uppercase alpha characters.

J1 4T Upper Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow
Short Data=Yes

The minimum length meets the requirement for SLT_1_3 tokenizer when Length
Preservation=Yes and Allow Short Data=Yes.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 58

Input Value Tokenized Value Comments

J1 Error. Input too short. Upper Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow
Short Data=No, generate error

The input has two characters to tokenize, which is short for SLT_1_3 tokenizer when
Length Preservation=Yes and Allow Short Data=No, generate error.

J1

J1Y

J1

4TD

Upper Alpha-Numeric, SLT_1_3, Left=0, Right=0, Length Preservation=Yes, Allow
Short Data=No, return input as it is

If the input value has less than three characters to tokenize, then it is returned as is else it
is tokenized.

NY AOZ Upper Alpha-Numeric, SLT_2_3, Left=0, Right=0, Length Preservation=No

The value is padded up to 3 characters which is minimum length for SLT_2_3 tokenizer.

131 Summer Street,
Bridgewater

8C9 CSD5PS 1X5

ZJH, 231JHXW8CVF

Upper Alpha-Numeric, SLT_2_3, Left=0, Right=0, Length Preservation=No

Spaces and comma are treated as delimiters and not tokenized. Lowercase characters
in the input are converted to uppercase in output. De-tokenization will return all alpha
characters in upper case.

704-BBJ 704-EC0 Upper Alpha-Numeric, SLT_1_3, Left=3, Right=0, Length Preservation=Yes

Dash is treated as delimiter. The rest of value is tokenized.

704-BBJ 704-HHT Upper Alpha-Numeric, SLT_2_3, Left=3, Right=0, Length Preservation=Yes

Dash is treated as delimiter. The rest of value is tokenized.

support@protegrity.com FKNKHHQ@72CN84
UKEI.com

Upper Alpha-Numeric, SLT_2_3, Left=0, Right=3, Length Preservation=Yes

3 characters from right are left in clear. ‘@’ and ‘.’ are treated as delimiters. The rest of
value is tokenized. De-tokenization will return all alpha characters in upper case.

3.4.8 Lower ASCII

The Lower ASCII token type is provided to address the handling of spaces in such data types as CHAR and VARCHAR.

Table 3-38: Lower ASCII Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Lower ASCII

Token type and Format The lower part of ASCII table.

Hex character codes from 0x21 to 0x7E.

For the list of ASCII characters supported by Lower ASCII token, refer to

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 59

Tokenization Type Properties Settings

Appendix A: ASCII Character Codes

Tokenizer Lengt
h
Prese
rvatio
n

Allow Short Data Minimum Length Maximum Length

SLT_1_3 Yes Yes 1 4096

No, return input as it is 3

No, generate error

No NA 1 4086

Possibility to set Minimum/ maximum length No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero

External IV Yes

Supported input data types (by Application
Protectors) *1

AP Python *4 AP Java*4 AP .Net*4 AP
NodeJS*4

AP C*4 AP Go*4

STRING

BYTES

STRING

CHAR[]

BYTE[]

STRING

BYTE[]

STRING

BYTE[]

BYTE[] STRING

[]BYTE

Supported input data types (by DB Protectors) MSSQL Server Oracle DB/2

VARCHAR*5

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data types (by MPP DB
Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

VARCHAR VARCHAR

Supported input data types (for Big Data
Protectors) *1

Map
Redu
ce *3

Hive*2 Pig*2 HB
ase
*3

Impala*2 Spa
rk
*3

Sp
ark
SQ
L

Presto*3

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 60

Tokenization Type Properties Settings

BYT
E[]

STRIN
G

CHARA
RRAY

BY
TE[
]

STRING BY
TE[
]

ST
RIN
G

ST
RI
NG

VARCH
AR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties Space character is treated as delimiter

Note:
*1– If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2– Ensure that you use the Horizontal tab (\t) as the field or column delimiter when loading data that is tokenized using Lower ASCII
tokens for Hive, Pig, Impala, and Presto.

*3– The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*4– The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*5 – Lower ASCII tokenization is not used with JSON or XML UDFs.

The following table shows examples of the way in which a value will be tokenized with the Lower ASCII token.

Table 3-39: Tokenization for Lower ASCII Values

Input Value Tokenized Value Comments

La Scala 05698 :H HnwqP v/Q`> All characters in the input value (except of spaces) are
tokenized.

Ford Mondeo CA-0256TY

M34 567 K-45

j`1$ nRSD<X T]!(~4MWF

l:f cF+ R?V{

All characters in the input value (except of spaces) are
tokenized.

ac ;H Lower ASCII, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=Yes

The minimum length meets the requirement for the SLT_1_3
tokenizer when Length Preservation=Yes and Allow Short
Data=Yes.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 61

Input Value Tokenized Value Comments

ac Error. Input too short. Lower ASCII, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=No, generate an error

The input has two characters to tokenize, which is short for
SLT_1_3 tokenizer when Length Preservation=Yes and Allow
Short Data=No, generate an error.

ac

aca

ac

;HH

Lower ASCII, SLT_1_3, Left=0, Right=0, Length
Preservation=Yes, Allow Short Data=No, return input as it is

If the input value has less than three characters to tokenize, then
it is returned as is else it is tokenized.

3.4.9 Printable

The Printable token type tokenizes ASCII printable characters from the ISO 8859-15 alphabet, which include letters, digits,
punctuation marks, and miscellaneous symbols.

Table 3-40: Printable Tokenization Type properties for different Protectors

Tokenization Type
Properties

Settings

Name Printable

Token type and Format ASCII printable characters, which include letters, digits, punctuation marks, and miscellaneous symbols

Hex character codes from 0x20 to 0x7E and from 0xA0 to 0xFF.

Refer to

Appendix A: ASCII Character Codes for the list of ASCII characters supported by Printable token.

Tokenizer*6 *7 Length Preservation Allow Short Data Minimum
Length

Maximum Length

SLT_1_3 Yes Yes 1 4096

No, return input as it
is

3

No, generate error

No NA 1 4091

Possibility to set
Minimum/ maximum
length

No

Left/Right settings Yes

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 62

Tokenization Type
Properties

Settings

Internal IV Yes, if Left/Right settings are non-zero

External IV Yes

Supported input data
types (by Application
Protectors) *1*10

AP Python *8 AP Java *8 AP C*8 AP Go*8

STRING

BYTES

STRING

CHAR[]

BYTE[]

BYTE[] STRING

[]BYTE

Supported input data
types (by DB Protectors)
*10

MSSQL Server Oracle DB/2

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data
types (by MPP DB
Protectors) *10

Teradata*11 GPDB IBM Netezza

VARCHAR LATIN *9

CHAR LATIN

VARCHAR VARCHAR

Supported input data
types (for Big Data
Protectors) *1*10

MapReduce
*4*5

Hive Pig HBase
*4*5

Impala*2*3 Spark *4*5 Spark SQL Presto

BYTE[] Not
supported

Not
supported

BYTE[] STRING BYTE[]

*5

Not
supported

VARCHAR

Return of Protected
value

Yes

Supported in Protegrity
releases

6.6.x – 9.x.x.x

Token specific properties Token tables are large (~ 27MB, refer to the exact numbers in the table SLT Tokenizer Characteristics).

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – Ensure that you use the Horizontal tab (\t) as the field or column delimiter when loading data that is tokenized using Printable tokens
for Impala.

*3 – Though the tokenization results for Impala may not be formatted and displayed accurately, they will be unprotected to the original
values, using the respective protector.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 63

*4 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*5 – It is recommended to use Printable tokenization only with APIs that accept BYTE[] as input and provide BYTE[] as output. If
Printable tokens are generated using APIs that accept BYTE[] as input and provide BYTE[] as output, and uniform encoding is maintained
across protectors, then the tokens can be used across various protectors. In addition, for the tokenization results to be formatted and
displayed accurately, ensure that the clients use the ISO 8859-15 character encoding, while converting the input from the String data type
to Byte and passing it as input to the Byte APIs.

*6 – The character column (CHAR) to protect is configured to remove trailing spaces before the tokenization. This means that the space
character can be lost in translation for Printable tokens. To avoid this consider using Lower ASCII token instead of Printable for CHAR
columns and input data having spaces.

*7 – Printable tokenization is not supported on databases where the character set is UTF.

*8 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*9 – JSON and XML UDFs are only used for Teradata.

*10 – If Printable tokens are generated using APIs or UDFs that accept STRING or VARCHAR as input, then the protected values can only
be unprotected using the protector with which it was protected. If you are unprotecting the protected data using any other protector, then
you could get inconsistent results.

*11 – Tokenizing XML or JSON data with Printable tokenization will not return valid XML or JSON format output.

Note:

Printable token data element is unsupported by the AP .Net and AP NodeJS.

Note:

For Non-US, when using Printable token, the From Codepage (FRCODEPG) parameter in PTYPARM file has to be set to the current
system codepage by the system administrator. This is valid for z/OS customers only.

The following table shows examples of the way in which a value will be tokenized with the Printable token.

Table 3-41: Tokenization for Printable Values

Input Value Tokenized Value Comments

La Scala 05698 F|ZpÙç|Ôä%s^¦4 All characters in the input value (including spaces) are
tokenized.

Ford Mondeo CA-0256TY

M34 567 K-45

§)%ß#)ðYjt{Â¬ÓÊEµV²ù² All characters in the input value (including spaces) are
tokenized.

qw rD Printable, SLT_1_3, Left=0, Right=0, Length Preservation=Yes,
Allow Short Data=Yes

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 64

Input Value Tokenized Value Comments

The minimum length meets the requirement for the SLT_1_3
tokenizer when Length Preservation=Yes and Allow Short
Data=Yes.

qw Error. Input too short. Printable, SLT_1_3, Left=0, Right=0, Length Preservation=Yes,
Allow Short Data=No, generate an error

The input has two characters to tokenize, which is short for
SLT_1_3 tokenizer when Length Preservation=Yes and Allow
Short Data=No, generate an error.

qw

qwa

qw

rDZ

Printable, SLT_1_3, Left=0, Right=0, Length Preservation=Yes,
Allow Short Data=No, return input as it is.

If the input value has less than three characters to tokenize, then
it is returned as is else it is tokenized.

3.4.10 Date (YYYY-MM-DD, DD/MM/YYYY, MM.DD.YYYY)

The Date token type protects dates in one of the following formats:

• YYYY<delim>MM<delim>DD

• DD<delim>MM<delim>YYYY

• MM<delim>DD<delim>YYYY

where <delim> is one of the allowed separators: . (dot), / (slash), or – (dash).

Supported date formats correspond to the big endian, little endian, and middle endian forms.

Table 3-42: Date Tokenization Type properties for different Databases

Tokenization Type Properties Settings

Name Date

Token type and Format Date in big endian form, starting with the year (YYYY-MM-DD).

Date in little endian form, starting with the day (DD/MM/YYYY).

Date in middle endian form, starting with the month (MM.DD.YYYY).

The following separators are supported: . (dot), / (slash), - (dash) supported.

Tokenizer Length Preservation Minimum Length Maximum Length

SLT_1_3

SLT_2_3

SLT_1_6

SLT_2_6*5

Yes 10 10

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 65

Tokenization Type Properties Settings

Possibility to set Minimum/
maximum length

No

Left/Right settings No

Internal IV No

External IV No

Supported input data types (by
Application Protectors) *1

AP Python *4 AP Java*4 AP .Net*4 AP
NodeJS*4

AP C*4 AP Go*4

DATE

BYTES

STRING

DATE

STRING

CHAR[]

BYTE[]

STRING

BYTE[]

STRING

BYTE[]

BYTE[] STRING

[]BYTE

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

DATE

VARCHAR2

CHAR

DATE CHAR

VARCHAR

Supported input data types (by MPP
DB Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

DATE DATE

Supported input data types (for Big
Data Protectors) *1

MapRed
uce *2

Hive Pig HBas
e *2

Impala Spark *2 Spark
SQL

Presto

BYTE[] STRI
NG
DATE
*3

CHAR
ARRA
Y

BYT
E[]

STRING BYTE[]

STRING

STRING

DATE*3

DATE*6

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties In Release 5.5 only specific separators were allowed. Starting from 6.0 all separators (. (dot), / (slash), -
(dash)) are allowed.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 66

Tokenization Type Properties Settings

Supported range of input dates From “0600-01-01” to “3337-11-27”.

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – In the Big Data Protector, the date format supported for Hive and Spark SQL is YYYY-MM-DD only.

*4 –The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*5 – The newly created data elements using the SLT_2_6 tokenizer from v7.1 Maintenance Release 1 (MR1) onwards are deployable to
protectors with versions 7.1 MR1 and higher.

*6 - In the Presto Protector, the date format supported is YYYY-MM-DD only.

Date token types are not fully validated for input value as valid date. For example, a day value greater than 31 and month value
greater than 12 results in an error, but the date input 2011-02-30 does not. However, the detokenized value would be 2011-03-02,
which is not the initial value.

The following table shows examples of the way in which a value will be tokenized with the Date token.

Table 3-43: Tokenization Examples for Date

Input Value Tokenized Value Comments

2012-02-29

2012/02/29

2012.02.29

2150-02-20

2150/02/20

2150.02.20

Date (YYYY-MM-DD) Token.

All three separators are successfully accepted. They are treated
as delimiters not impacting tokenized value.

31/01/0600 08/05/2215 Date (DD/MM/YYYY) Token.

Date in the past is tokenized.

10.30.3337 09.05.2042 Date (MM.DD.YYYY)

Date in the future is tokenized.

2012:08:24

1975-01-32

Token is not generated due to invalid
input value. Error is returned.

Date (YYYY-MM-DD) Token.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 67

Input Value Tokenized Value Comments

Input values with non-supported separators or with unsupported
dates produce error.

Date Tokenization for Cutover Dates of the Proleptic Gregorian Calendar

The data systems, such as, Oracle or Java-based systems, do not accept the cutover dates of the Proleptic Gregorian
Calendar. The cutover dates of the Proleptic Gregorian Calendar fall in the interval 1582-10-05 to 1582-10-14. These
dates are converted to 1582-10-15. When using Oracle, conversion occurs by adding ten days to the source date. Due to
this conversion, data loss occurs as the system is not capable to return the actual date value after the de-tokenization.

The following points are applicable for the tokenization and de-tokenization of the cutover dates of the Proleptic
Gregorian Calendar:

• The tokenization of the date values in the cutover date range of the Proleptic Gregorian Calendar results in an 'Invalid
Input' error.

• During tokenization, an internal validation is performed to check whether the value is tokenized to the cutover date.
If it is a cutover date, then the Year part (1582) of the tokenized value is converted to 3338 and then returned. During
de-tokenization, an internal check is performed to validate whether the Year is 3338. If the Year is 3338, then it is
internally converted to 1582.

Note:

The tokenization accepts the date range 0600-01-01 to 3337-11-27 excluding the cutover date range.

The de-tokenization accepts the date ranges 0600-01-01 to 3337-11-27 and 3338-10-05 to 3338-10-14.

Consider a scenario where you are migrating the protected data from Protector 1 to Protector 2. The Protector 1 includes
the Date tokenizer update to process the cutover dates of the Proleptic Gregorian Calendar as input. The Protector 2 does
not include this update. In such a scenario, an 'Invalid Date Format' error occurs in Protector 2, when you try to unprotect
the protected data as it fails to accept the input year 3338. The following steps must be performed to mitigate this issue:

1. Unprotect the protected data from Protector 1

2. Migrate the unprotected data to Protector 2

3. Protect the data from Protector 2

3.4.11 Datetime (YYYY-MM-DD HH:MM:SS)

The Datetime token type was introduced in response to requirements to allow specific date parts to remain in the clear and for
date tokens to be distinguishable from real dates. This token type will also allow for time to be tokenized (HH:MM:SS) with the
exception of fractions of a second, including milliseconds (MMM), microseconds (mmmmmm), and nanoseconds (nnnnnnnnn).

Table 3-44: Datetime Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Datetime

Token type and Format Datetime in the following formats:

YYYY-MM-DD HH:MM:SS.MMM*5

YYYY-MM-DDTHH:MM:SS.MMM*5

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 68

Tokenization Type Properties Settings

YYYY-MM-DD HH:MM:SS.mmmmmm*5

YYYY-MM-DDTHH:MM:SS.mmmmmm*5

YYYY-MM-DD HH:MM:SS.nnnnnnnnn*5

YYYY-MM-DDTHH:MM:SS.nnnnnnnnn*5

YYYY-MM-DD HH:MM:SS

YYYY-MM-DDTHH:MM:SS

YYYY-MM-DD

From “0600-01-01” to “3337-11-27”, alphabetic digits 0-9, only specific delimiters*4

Input separators (delimiter) between date,
month and year

. (dot), / (slash), or - (dash)

Input separators (delimiter) between
hours, minutes and seconds

colon only (“:”)

Input separator (delimiter) between date
and hour

space (“ ”) or T letter (“T”)

Input separator (delimiter) between
seconds and milliseconds

For DATE datatype “.” (dot)

For CHAR, VARCHAR, and STRING datatypes “.” (dot), “,” (comma)

Tokenizer Length Preservation Minimum Length Maximum Length

SLT_DATETIME Yes 10 29

Possibility to set Minimum/ maximum
length

No

Left/Right settings No

Internal IV No

External IV No

Supported input data types (by
Application Protectors) *1

AP Python *3 AP Java*3 AP
NodeJS*3

AP C*3 AP .Net*3 AP Go*3

DATE

BYTES

STRING

DATE

STRING

CHAR[]

STRING

BYTE[]

BYTE[] STRING

BYTE[]

STRING

[]BYTE

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 69

Tokenization Type Properties Settings

BYTE[]

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

DATE

VARCHAR2

CHAR

DATE CHAR

VARCHAR

Supported input data types (by MPP DB
Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

VARCHAR VARCHAR

Supported input data types (for Big Data
Protectors) *1

MapReduce *2 Hive Pig HBase
*2

Impala Spark *2 Spark
SQL

Presto

BYTE[] STRING

DATETI
ME

CHAR
ARRA
Y

BYT
E[]

STRING BYTE[]

STRING

STRING

DATETIM
E

TIMES
TAMP

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties

Tokenize time Yes/No

Distinguishable date Yes/No

Date in clear Month/Year/None

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 70

*4 – The Microsoft SQL Server accepts input value ranging between “1753-01-01” through “9999-12-3” for DATETIME data type. As
the tokenized value ranges between “0600-01-01” through “3337-11-27”, the incompatible values are not supported by the column defined
with DATETIME data type. The following solutions are available to address this issue:

• Retain the Year using the Date in Clear property. The tokenized value retains the Year in clear.

• Change the column data type to DATETIME2 date type. The Microsoft SQL Server supports input value ranging between “0001-01-01
00:00:00.0000000” through “9999-12-31 23:59:59.9999999” for DATETIME2 data type.

*5 - The Protegrity Datetime token type supports fractions of a second as an input, up to 9 digits for protector versions 9.2.0.0 and later.

Note:

The Datetime token type and the DB2 Timestamp data type have incompatible date formats, hence the Datetime token type is not
supported for z/OS protectors except for z/OS UDFs.

The z/OS Protectors from build number 7.0.1.17, support the Datetime tokens. However, the Datetime tokens with tokenized time set to
Yes are not supported.

Tokenize Time property defines whether the time part (HH:MM:SS) will be tokenized. If Tokenize Time is set to “No”, then the
time part will be treated as a delimiter and will be added to the date after tokenization.

Distinguishable Date property defines whether the tokenized values will be outside of the normal date range.

If the Distinguishable Date option is enabled, then all tokenized dates will be in the range from year 5596-09-06 to 8334-08-03.
The tokenized value will become recognizable.

If the Distinguishable Date option is disabled, then the tokenized dates will be in the range from year 0600-01-01 to 3337-11-27.
As an example, tokenizing "2012-04-25" will result in “1856-12-03” (non-distinguishable) and “6457-07-12” (distinguishable).

The Date in Clear property defines whether Month or Year will be left in the clear in the tokenized value.

Note: You cannot use enabled Distinguishable Date and select month or year to be left in the clear at the same time

The following points are applicable when you tokenize the Dates with Year as 3337 by setting the Year part to be in clear:

• The tokenized Date value can be outside of the accepted Date range.

• The tokenized Date value can be de-tokenized to obtain the original Date value.

For example, if the Date 3337-11-27 is tokenized by setting the Year part 3337 in clear, then the resultant tokenized value
3337-12-15 is outside of the accepted Date range. The de-tokenization of this tokenized value returns the original Date
3337-11-27.

The following table shows examples of the way in which a value will be tokenized with the Datetime token.

Table 3-45: Tokenization for DateTime Values

Input Value Tokenized Value Comments

2009.04.12 12:23:34.333 1595.06.19 14:31:51.333 YYYY-MM-DD HH:MM:SS.MMM. The milliseconds value is left in the
clear.

2009.04.12 12:23:34.333666 1595.06.19 14:31:51.333666 YYYY-MM-DD HH:MM:SS.mmmmmm. The microseconds value is left in
the clear.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 71

Input Value Tokenized Value Comments

2009.04.12
12:23:34.333666999

1595.06.19
14:31:51.333666999

YYYY-MM-DD HH:MM:SS.nnnnnnnnn. The nanoseconds value is left in the
clear.

2009.04.12 12:23:34 1595.06.19 14:31:51 YYYY-MM-DD HH:MM:SS with space separator between day and hour.

2234.10.12T12:23:23 2755.08.04T22:33:43 YYYY-MM-DDTHH:MM:SS with T separator between day and hour values.

2009.04.12 12:23:34.333 5150.05.14T17:49:34.333 Datetime with distinguishable date on (the year value is unreal).

2234.12.22 22:53:34 2755.03.15 19:03:21 Datetime token in any format with distinguishable date off (the year value is
real).

2009.04.12 12:23:34.333 1595.04.19 14:31:51.333 Datetime token with month in the clear.

2009.04.12 12:23:34.333 2009.06.19 14:31:51.333 Datetime token with year in the clear.

Datetime Tokenization for Cutover Dates of the Proleptic Gregorian Calendar

The data systems, such as, Oracle or Java-based systems, do not accept the cutover dates of the Proleptic Gregorian
Calendar. The cutover dates of the Proleptic Gregorian Calendar fall in the interval 1582-10-05 to 1582-10-14. These
dates are converted to 1582-10-15. When using Oracle, conversion occurs by adding ten days to the source date. Due to
this conversion, data loss occurs as the system is not capable to return the actual date value after the de-tokenization.

Note: The tokenization of the Date values in the cutover Date range of the Proleptic Gregorian Calendar results in an 'Invalid
Input' error.

The following points are applicable when the Distinguishable Date option is disabled:

• If the Distinguishable Date option is disabled, then the tokenized dates are in the range 0600-01-01 to 3337-11-27,
which also includes the cutover date range. During tokenization, an internal validation is performed to check whether
the value is tokenized to the cutover date. If it is a cutover date, then the Year part (1582) of the tokenized value is
converted to 3338 and then returned.

• During de-tokenization, an internal check is performed to validate whether the Year is 3338. If the Year is 3338, then
it is internally converted to 1582.

The following points are applicable when you tokenize the dates from the Year 1582 by setting the Year part to be in
clear:

• The tokenized value can result in the cutover Date range. In such a scenario, the Year part of the tokenized Date value
is converted to 3338.

• During de-tokenization, the Year part of the Date value is converted to 1582 to obtain the original date value.

For example, if the date 1582.04.30 12:12:12 is tokenized by setting the Year part in clear and the resultant tokenized
value falls in the cutover Date range, then the Year part is converted to 3338 resulting in a tokenized value as 3338.10.10
12:12:12. The de-tokenization of this tokenized value returns the original Date 1582.04.30 12:12:12.

Note:

The tokenization accepts the date range 0600-01-01 to 3337-11-27 excluding the cutover date range.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 72

The de-tokenization accepts the date range 0600-01-01 to 3337-11-27 and date values from the Year 3338.

Consider a scenario where you are migrating the protected data from Protector 1 to Protector 2. The Protector 1 includes
the Datetime tokenizer update to process the cutover dates of the Proleptic Gregorian Calendar as input. The Protector
2 does not include this update. In such a scenario, an 'Invalid Date Format' error occurs in Protector 2, when you try to
unprotect the protected data as it fails to accept the input year 3338. The following steps must be performed to mitigate
this issue:

1. Unprotect the protected data from Protector 1

2. Migrate the unprotected data to Protector 2

3. Protect the data from Protector 2

3.4.12 Decimal

The Decimal token type tokenizes numbers which may have a precision and scale. The resulting token does not contain any zeros
which makes it suitable to store in a decimal data type in a database. Any sign or decimal point delimiter are stripped from the
input value before tokenization and put back after tokenization.

Note: When data with decimal point delimiter is protected, the number of digits counted after the decimal point are length preserving. For
example, consider decimal data '345645.345' is protected to return the protected value as '3456736.768'. The number of digits that exist
after the decimal point remain the same in both the values.

Table 3-46: Decimal Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Decimal

Token type and Format Digits 0 through 9 in input value, 1 thorough 9 in output value

The sign (+ or -) and decimal point (. or ,) separator

Tokenizer Length
Preservation

Minimum
Length

Maximum Length

SLT_6_DECIMAL No 1 36 *2

Possibility to set Minimum/ maximum
length

Yes

Left/Right settings No

Internal IV No

External IV No

Supported input data types (by
Application Protectors) *1

AP Python *4 AP Java *4 AP
NodeJS*3

AP C*4 AP .Net*3 AP Go*4

STRING STRING STRING BYTE[
]

STRING STRING

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 73

Tokenization Type Properties Settings

BYTES CHAR[]

BYTE[]

BYTE[] BYTE[] []BYTE

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

NUMBER (p,s)

VARCHAR2

CHAR

CHAR VARCHAR2

Supported input data types (by MPP
DB Protectors)

Teradata GPDB IBM Netezza

VARCHAR LATIN

CHAR LATIN

VARCHAR VARCHAR

Supported input data types (for Big
Data Protectors) *1

MapReduce
*3

Hive Pig HBas
e *3

Impala Spark *3 Spar
k
SQL

Presto

BYTE[] STRI
NG

CHAR
ARRA
Y

BYT
E[] *3

STRING BYTE[]

STRING

STRI
NG

VARCHAR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties Supports Numeric data with precision and scale.

The token will not contain any zeros.

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The configurable input length for decimal values is between 1 and 36 digits. The upper range is 38 digits. However, since decimal
token is not length preserving, only up to 36 digits are supported.

*3 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 74

*4 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

Note: If you set custom maximum length for decimal token, then take into account that the actual maximum length of the input value
should be 1-2 characters less than custom maximum. This type of token is non-length preserving, and the tokenized value can be 1-2
characters longer than the input value.

The following table shows examples of the way in which a value will be tokenized with the Decimal token.

Table 3-47: Tokenization for Decimal Values

Input Value Tokenized Value Comments

519.02 268.68 Input value has (.) dot separator.

-0.333807 -9.893967 Input value has sign and (.) dot separator.

+,461 +,918 Input value has sign and (,) comma separator.

0 1 Minimum length, no sign or separator.

3.4.13 Unicode

The Unicode token type can be used to tokenize multi-byte character strings. The input is treated as a byte stream, hence there
are no delimiters. There are also no character conversions or code point validation done on the input. The token value will be
alpha-numeric.

Unicode tokenization is supported only by Application Protectors, Big Data Protector and Teradata Database Protector.

Note: z/OS supports Unicode tokenization.

Table 3-48: Unicode Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Unicode

Token type and Format Application protectors support UTF-8, UTF-16LE, and UTF-16BE encoding.

Hex character codes from 0x00 to 0xFF.

Note: For the list of supported characters, refer to

AppendixA: ASCII Character Codes.

Tokenizer Length
Preservation

Allow
Short
Data*11

Minimum Length*10 Maximum Length12

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 75

Tokenization Type Properties Settings

SLT_1_3 *1

SLT_2_3 *1

No Yes 1 byte 4096

No,
return
input as it
is

3 bytes

No,
generate
error

Possibility to set Minimum/
maximum length

No

Left/Right settings No

Internal IV No

External IV Yes

Note: The Database Protectors do not support External IV.

Supported input data types (by
Application Protectors)*3

AP Python *9 AP
Java*9

AP
NodeJS*9

AP C*9 AP .Net*9 AP Go*9

BYTES

STRING

BYTE[]

CHAR[]

STRING

STRING

BYTE[]

BYTE[] STRING

BYTE[]

[]BYTE

STRING

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

NVARCHAR VARCHAR2 VARCHAR*4

Supported input data types (by
MPP DB Protectors)

Teradata *7 Greenplum IBM Netezza

VARCHAR UNICODE VARCHAR Not supported

Supported input data types (for Big
Data Protectors)*2

MapRedu
ce *5

Hive Pig HBase *5 Impala*6 Spark *5 Spark SQL Presto

BYTE[] STRI
NG

Not
suppor
ted

BYTE[] STRING BYTE[]

STRING

STRING VARCHAR

Supported input data types

(z/OS)

GRAPHIC

VARGRAPHIC

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 76

Tokenization Type Properties Settings

Return of Protected value Yes

Supported in Protegrity releases From release 6.6.0 onwards

Token specific properties Tokenization result is Alpha-Numeric.

Note:
*1 – In z/OS, the maximum input length supported for all protectors is 128. If short data tokenization is enabled for Unicode data elements,
then the lookup tables are not generated. In this case, every byte of the input is appended with two padding characters prior to the
tokenization.

*2 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*3 - z/OS supports DB/2 database protector.

*4 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*5 – If you are configuring Unicode tokens with the Teradata database protector, then ensure that the prerequisites for the same are met.

For more information about the prerequisites, refer to section 7.6 Using Unicode Tokens with Teradata in the Database Protector Guide
9.2.0.0.

*7 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*8 - If short data tokenization is not enabled, the minimum length for Unicode tokenization type is 3 bytes. The input value in Teradata
Unicode UDF is encoded using UTF16 due to which internally the data length is multiplied by 2 bytes. Hence, the Teradata Unicode UDF
is able to tokenize a data length that is less than the minimum supported length of 3 bytes.

*9 - The options to enable short data tokenization and to return input as is for Unicode data elements is supported by protectors with version
7.2 or higher.

10 - The maximum input length to safely tokenize and detokenize the data is 4096 bytes, which is irrespective of the byte representation.

Note:

For pty.sel_unicode_varchar and pty.ins_unicode_varchar UDFs in the DB2 Database Protector, the maximum input length supported is
16350 bytes.

The minimum and maximum lengths supported for the Big Data Protector are as described by the following points:

• MapReduce: The maximum limit that can be safely tokenized and detokenized back is 4096 bytes. The user controls the encoding, as
required.

• Spark: The maximum limit that can be safely tokenized and detokenized back is 4096 bytes. The user controls the encoding, as
required.

• Hive: The ptyProtectUnicode and ptyUnprotectUnicode UDFs convert the data to UTF-16LE encoding internally, which has a
minimum requirement of four bytes of data (in UTF-16LE encoding), and a maximum limit of 4096 bytes (in UTF-16LE encoding) to
safely tokenize and detokenize the data.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 77

The pty_ProtectStr and pty_UnprotectStr UDFs convert the data to UTF-8 encoding internally, which has a minimum requirement of
three bytes of data (in UTF-8 encoding), and a maximum limit of 4096 bytes (in UTF-8 encoding) to safely tokenize and detokenize
the data.

• Impala: The pty_UnicodeStringIns and pty_UnicodeStringSel UDFs convert the data to UTF-16LE encoding internally, which has a
minimum requirement of four bytes of data (in UTF-16LE encoding), and a maximum limit of 4096 bytes (in UTF-16LE encoding) to
safely tokenize and detokenize the data.

The pty_StringIns and pty_StringSel UDFs convert the data to UTF-8 encoding internally, which has a minimum requirement of three
bytes of data (in UTF-8 encoding), and a maximum limit of 4096 bytes (in UTF-8 encoding) to safely tokenize and detokenize the data.

For instance, the respective lengths for UTF-8 and UTF-16LE, in bytes, is described in the following table.

Table 3-49: Lengths for UTF-8 and UTF-16LE

Input Value UTF-8 UTF-16LE

18 bytes 12 bytes

Protegrity 10 bytes 20 bytes

The following table shows examples of the way in which a value will be tokenized with the Unicode token.

Table 3-50: Tokenization for Unicode Values

Input Value Tokenized Value Comments

WurIeXLFZPApXQorkFCKl3hpRaGR28K Input value contains Cyrillic characters. Tokenization result is
Alpha-Numeric.

xM2EcAQ0LVtQJ Input value contains characters in Simplified Chinese.
Tokenization result is Alpha-Numeric.

Protegrity RsbQU8KdcQzHJ1 Algorithm is non-length preserving. Tokenized value is longer
than initial one.

a V2wU Unicode, Allow Short Data=Yes

Algorithm is non-length preserving. Tokenized value is longer
than initial one.

a9c A0767Vo

3.4.14 Unicode Base64

The Unicode Base64 token type can be used to tokenize multi-byte character strings. The input is treated as a byte stream,
hence there are no delimiters. Any character conversions or code point validation are not performed on the input. This token
element uses Base64 encoding resulting in better performance compared to Unicode token element as it supports three additional
characters, namely +, /, and = along with alpha numeric characters. The token value generated includes alpha numeric, +, /, and
=.

The Unicode Base64 tokenization is supported only by Application Protectors, Big Data Protector, Oracle Database Protector,
and Data Security Gateway.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 78

Table 3-51: Unicode Base64 Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Unicode Base64

Token type and Format Application protectors support UTF-8 encoding.

Hex character codes from 0x00 to 0xFF.

For the list of supported characters, refer to

AppendixA: ASCII Character Codes.

Tokenizer Length Preservation Allow Short
Data

Minimum Length Maximum Length*6

SLT_1_3

SLT_2_3

No Yes 1 byte 4096

No, return
input as it is

3 bytes

No, generate
error

Possibility to set Minimum/Maximum
length

No

Left/Right settings No

Internal IV No

External IV Yes

Note: External IV is not supported in Database Protector.

Supported input data types (by
Application Protectors)*1

AP Python *5 AP Java*5 AP
NodeJS*5

AP C*5 AP .Net*5 AP Go*5

BYTES

STRING

BYTE[]

CHAR[]

STRING

STRING

BYTE[]

BYTE[] STRING

BYTE[]

[]BYTE

STRING

Supported input data types (by DB
Protectors)

MSSQL Server Oracle*7 DB/2*2

NVARCHAR VARCHAR2

NVARCHAR2

VARCHAR*2

Supported input data types (by MPP
DB Protectors)

Teradata GPDB IBM Netezza

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 79

Tokenization Type Properties Settings

VARCHAR UNICODE Not supported Not supported

Supported input data types (for Big
Data Protectors)

MapRedu
ce *3

Hive Pig HBas
e *3

Impala Spark *3 Spa
rk
SQ
L

Presto

BYTE[] STRIN
G

Not
suppor
ted

BYT
E[]

STRING BYTE[]

STRING

ST
RI
NG

VARCHAR

Return of Protected value Yes

Supported in Protegrity releases 9.1.0.0

Token specific properties Tokenization result is Alpha-Numeric, +, /, and =.

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 - z/OS supports DB/2 database protector.

*3 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*5 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*6 - The maximum input length to safely tokenize and detokenize the data is 4096 bytes, which is irrespective of the byte representation.

*7 - The maximum input lengths supported for the Oracle database protector are as described by the following points:

• Base 64 – Data type : VARCHAR2: The maximum limit that can be safely tokenized and detokenized back is 3000 bytes.

• Base 64 – Data type : NVARCHAR2: The maximum limit that can be safely tokenized and detokenized back is 3000 bytes.

Note:

The minimum and maximum lengths supported for the Big Data Protector are as described by the following points:

• MapReduce: The maximum limit that can be safely tokenized and detokenized back is 4096 bytes. The user controls the encoding, as
required.

• Spark: The maximum limit that can be safely tokenized and detokenized back is 4096 bytes. The user controls the encoding, as
required.

• Hive: The ptyProtectUnicode and ptyUnprotectUnicode UDFs convert the data to UTF-16LE encoding internally, which has a
minimum requirement of four bytes of data (in UTF-16LE encoding), and a maximum limit of 4096 bytes (in UTF-16LE encoding) to
safely tokenize and detokenize the data.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 80

The pty_ProtectStr and pty_UnprotectStr UDFs convert the data to UTF-8 encoding internally, which has a minimum requirement of
three bytes of data (in UTF-8 encoding), and a maximum limit of 4096 bytes (in UTF-8 encoding) to safely tokenize and detokenize
the data.

• Impala: The pty_UnicodeStringIns and pty_UnicodeStringSel UDFs convert the data to UTF-16LE encoding internally, which has a
minimum requirement of four bytes of data (in UTF-16LE encoding), and a maximum limit of 4096 bytes (in UTF-16LE encoding) to
safely tokenize and detokenize the data.

The pty_StringIns and pty_StringSel UDFs convert the data to UTF-8 encoding internally, which has a minimum requirement of three
bytes of data (in UTF-8 encoding), and a maximum limit of 4096 bytes (in UTF-8 encoding) to safely tokenize and detokenize the data.

For instance, the respective lengths for UTF-8 and UTF-16LE, in bytes, is described in the following table.

Table 3-52: Lengths for UTF-8 and UTF-16LE

Input Value UTF-8 UTF-16LE

18 bytes 12 bytes

Protegrity 10 bytes 20 bytes

The following table shows examples of the way in which a value will be tokenized with the Unicode Base64 token.

Table 3-53: Tokenization for Unicode Base64 Values

Input Value Tokenized Value Comments

BftgxVX0t+O+I8v Input value contains Cyrillic characters. Tokenization result
include alpha numeric characters, =, and +.

Protegrity 9NHI=znyLfgRiRvD Algorithm is non-length preserving. Tokenized value is longer
than initial one.

=+bg Unicode Base64 token element

Algorithm is non-length preserving. Tokenized value is longer
than initial one.

P+ +BIN Unicode Base64 token element, Allow Short Data=Yes

Algorithm is non-length preserving. Tokenized value is longer
than initial one.

3.4.15 Unicode Gen2

The Unicode Gen2 token type can be used to tokenize multi-byte code point character strings. The input Unicode data after
protection returns a token value in the same Unicode character format. The Unicode Gen2 token type gives you the liberty
to customize how the protected token value is returned. It allows you to leverage existing internal alphabets or create custom
alphabets by defining code points. The Unicode Gen2 token type also supports code point length preservation, thus resulting in
the protected token length to be exactly the same as the input data, if the length preservation option is selected.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 81

As the token type provides customizations through defining code points and creating custom token values, there are some
considerations that must be taken before using such custom alphabets.

Note: For more information about the considerations, refer to Code Point Range in Unicode Gen2 Token Type.

The performance benefits of this token type are higher compared to the other Unicode token types.

Table 3-54: Unicode Gen2 Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Unicode Gen2

Token type and Format Application Protectors support UTF-8, UTF-16LE and UTF-16BE encoding.

Code points from U+0020 to U+3FFFF excluding D800-DFFF.

Note:

Encoding supported by the Unicode Gen2 data element is UTF-8, UTF-16LE, and UTF-16BE. If
you are using Unicode Gen2 data element and Byte APIs, then ensure that the encoding, which is
used to convert the string input data to bytes, matches the encoding that is selected in the Default
Encoding drop-down for the required Unicode Gen2 data element.

Tokenizer Length
Preservation

Allow
Short Data

Minimum Length*6 Maximum Length*7

SLT_1_3 *1

SLT_X_1 *1

Yes Yes 1 Code Point 4096 Code Points

No, return
input as it is

3 Code Points

No,
generate
error

Possibility to set Minimum/
Maximum length

No

Left/Right settings Yes

Internal IV No

External IV Yes

Note: The Database Protectors do not support External IV.

Supported input data types (by
Application Protectors)*1

AP Python*5 AP Java*5 AP
NodeJS*5

AP C*5 AP .Net*5 AP Go*5

BYTES BYTE[] STRING BYTE[] STRING []BYTE

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 82

Tokenization Type Properties Settings

STRING CHAR[]

STRING

BYTE[] BYTE[] STRING

Supported input data types (by DB
Protectors)

MSSQL Server Oracle*7 DB/2*2

NVARCHAR VARCHAR2

NVARCHAR2

VARCHAR*2

Supported input data types (by MPP
DB Protectors)

Teradata GPDB IBM Netezza

VARCHAR UNICODE Not supported Not supported

Supported input data types (for Big
Data Protectors) *1

MapRed
uce *3

Hive Pig HBas
e *3

Impala*5 Spark *3 Spa
rk
SQ
L

Presto

BYTE[] STRIN
G

Not
suppo
rted

BYT
E[]

STRING BYTE[]

STRING

ST
RI
NG

VARCHAR

Return of Protected value Yes

SLT_1_3 tokenizer supported in
Protegrity releases

From release 8.1.0.0 onwards

SLT_X_1 tokenizer supported in
Protegrity releases

From release 9.1.0.0 onwards

Token specific properties Result is based on the alphabets selected while creating the token.

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 - z/OS supports DB/2 database protector.

*3 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*5 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*6 - The maximum input length to safely tokenize and detokenize the data is 4096 bytes, which is irrespective of the byte representation.

*7 - The maximum input lengths supported for the Oracle database protector are as described by the following points:

• Unicode Gen2 – Data type : VARCHAR2:

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 83

1. If the tokenizer length preservation parameter is selected as Yes, then the maximum limit that can be safely tokenized and
detokenized is 4000 bytes.

2. If the tokenizer length preservation parameter is selected as No, then the maximum limit that can be safely tokenized and
detokenized is 3000 bytes.

• Unicode Gen2 – Data type : NVARCHAR2:

1. If the tokenizer length preservation parameter is selected as Yes, then the maximum limit that can be safely tokenized and
detokenized is 4000 bytes.

2. If the tokenizer length preservation parameter is selected as No, then the maximum limit that can be safely tokenized and
detokenized is 3000 bytes.

• Unicode Gen2 - Tokenizers

• The Unicode Gen2 data element supports SLT_1_3 and SLT_X_1 tokenizers.

• The SLT_1_3 tokenizer supports small alphabet size from 10-160K code points.

• The SLT_X_1 tokenizer supports large alphabet size from 161-100K code points.

Note:

The minimum and maximum lengths supported for the Big Data Protector are as described by the following points:

• MapReduce: The maximum limit that can be safely tokenized and detokenized back is 4096 bytes. The user controls the encoding, as
required.

• Spark: The maximum limit that can be safely tokenized and detokenized back is 4096 bytes. The user controls the encoding, as
required.

• Hive: The ptyProtectUnicode and ptyUnprotectUnicode UDFs convert the data to UTF-16LE encoding internally, which has a
minimum requirement of four bytes of data (in UTF-16LE encoding), and a maximum limit of 4096 bytes (in UTF-16LE encoding) to
safely tokenize and detokenize the data.

The pty_ProtectStr and pty_UnprotectStr UDFs convert the data to UTF-8 encoding internally, which has a minimum requirement of
three bytes of data (in UTF-8 encoding), and a maximum limit of 4096 bytes (in UTF-8 encoding) to safely tokenize and detokenize
the data.

• Impala: The pty_UnicodeStringIns and pty_UnicodeStringSel UDFs convert the data to UTF-16LE encoding internally, which has a
minimum requirement of four bytes of data (in UTF-16LE encoding), and a maximum limit of 4096 bytes (in UTF-16LE encoding) to
safely tokenize and detokenize the data.

The pty_StringIns and pty_StringSel UDFs convert the data to UTF-8 encoding internally, which has a minimum requirement of three
bytes of data (in UTF-8 encoding), and a maximum limit of 4096 bytes (in UTF-8 encoding) to safely tokenize and detokenize the data.

Note:

The string as an input and byte as an output API is unsupported by Unicode Gen2 data elements for AP Java and AP Python.

For instance, the respective lengths for UTF-8, UTF-16LE, and UTF-16BE in bytes, is described in the following table.

Table 3-55: Lengths for UTF-8, UTF-16LE, and UTF-16BE

Input Value UTF-8 UTF-16LE UTF-16BE

18 bytes 12 bytes 12 bytes

Protegrity 10 bytes 20 bytes 20 bytes

The following table shows examples of the way in which a value will be tokenized with the Unicode Gen2 token.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 84

Table 3-56: Tokenization for Unicode Gen2 Values

Input Value Tokenized Value Comments

Input value contains Cyrillic characters. Tokenization results
include Cyrillic characters as the data element is created
with the Cyrillic alphabet in its definition. The length of the
tokenized value is equal to the length of the input data.

Protegrity 93VbLvI12g Input contains English characters. As the data element include
Basic Latin Alpha Numeric characters, the token element
includes the same. Algorithm is length preserving. The length
of the tokenized value is equal to the length of the input data.

Input value contains Cyrillic characters. Tokenization results
include Cyrillic characters as the data element is created with
the Cyrillic alphabet in its definition. Allow Short Data=Yes

Algorithm is length preserving. The length of the tokenized
value is equal to the length of the input data.

3.4.15.1 Code Point Range in Unicode Gen2 Token Type

When you define a Unicode Gen2 data element, you have an option to either leverage the existing internal alphabets or create
custom alphabets. When creating a custom alphabet, a combination of existing alphabets, individual code points or ranges of code
points can be used.

While this feature gives you the flexibility to generate token values in Unicode characters, the data element creation does not
validate if the code point is defined or undefined. For example, consider that you create a data element that protects Greek and
Coptic Unicode block. Though not recommended, a way you might consider to create the custom alphabet would be using the
code point range option to include the whole Unicode block that ranges from U+0370 to U+03FF. As seen from the following
image, this range includes both defined and undefined code points.

Figure 3-7: Greek and Coptic Code Points

The code point, U+0378 in the defined Greek and Coptic code point range is an undefined code point. When any input data is
protected, since the code point range includes both defined and undefined code points, it might result in a corrupted token value if
the entire code point range is defined.

It is hence recommended that for Unicode code point ranges where both defined and undefined code points exist, you must create
code points ranges excluding any undefined code points. So, in case of the Greek and Coptic characters, a recommended strategy

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 85

to define alphabets would be to create multiple alphabet entries, such as a range to cover U+0371 to U+0377, another range to
cover U+037A to U+037F, and so on, thus skipping undefined code points.

Important: Only the alphabet characters that are supported by the OS fonts are displayed on the Web UI.

Note: Ensure that code points in the alphabet are supported by the protectors using this alphabet.

3.4.16 Binary

The Binary token type can be used to tokenize binary data with Hex codes from 0x00 to 0xFF. Binary token is supported only by
Application Protectors but not by this Protector in z/OS.

Table 3-57: Binary Tokenization Type properties for different Protectors

Tokenization Type Properties Settings

Name Binary

Token type and Format Hex character codes from 0x00 to 0xFF.

Tokenizer Length
Preservation

Minimum
Length

Maximum Length

SLT_1_3

SLT_2_3

No 3 4095

Possibility to set Minimum/
maximum length

No

Left/Right settings Yes

Internal IV Yes, if Left/Right settings are non-zero.

External IV Yes

Supported input data types (by
Application Protectors) *1

AP Python *4 AP Java*4 AP
NodeJS*4

AP C*4 AP .Net*4 AP Go*4

BYTES BYTE[] BYTE[] BYTE[
]

BYTE[] []BYTE

Supported input data types (by
DBs)

MSSQL Server Oracle DB/2

Not supported Not supported Not supported

Supported input data types (by
MPP DBs)

Teradata GPDB IBM Netezza

Not supported Not supported Not supported

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 86

Tokenization Type Properties Settings

Supported input data types (for Big
Data Protectors) *1

MapRedu
ce *2

Hive Pig HBas
e *2

Impala Spark *2 Spark SQL Presto

BYTE[] Not
suppo
rted

Not
suppo
rted

BYT
E[]

Not supported BYTE[]

*3

Not supported Not supported

Return of Protected value No

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties Tokenization result is binary.

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*3 – It is recommended to use Binary tokenization only with APIs that accept BYTE[] as input and provide BYTE[] as output. If Binary
tokens are generated using APIs that accept BYTE[] as input and provide BYTE[] as output, and uniform encoding is maintained across
protectors, then the tokens can be used across various protectors.

*4 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

The following table shows examples of the way in which a value will be tokenized with the Binary token.

Table 3-58: Tokenization for Binary Values

Input Value Tokenized Value Comments

Protegrity 0x05C1CF0C310B2D38ACAD4C Tokenization result is returned as a binary stream.

123 0x19707E Tokenization of the value with Minimum supported length.

3.4.17 Email

Email token type allows tokenization of an email address. Email token keeps the domain name along with all characters before
the “@” sign, and the “@” sign itself in the clear. The local part (i.e. the part before “@”) gets tokenized.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 87

Table 3-59: Email Tokenization Type Properties different Protectors

Tokenization Type Properties Settings

Name Email

Token type and Format Alphabetic and numeric only. The rest characters will be treated as delimiters.

Tokenizer*3 Lengt
h
Preser
vation

Minimum Length Maximum Length

Local Domain Ent
ire

Local Domain Entire

SLT_1_3

SLT_2_3

No 1 1 3 63 252 256

No 1 1 3 63 252 256

SLT_1_3

SLT_2_3

Yes 3*5 1 5 64 252*6 256

Yes 3*5 1 5 64 252*6 256

Possibility to set minimum/ maximum
length

No

Left/Right settings No

Internal IV N/A

External IV Yes

Supported input data types (by
Application Protectors) *1

AP Python *4 AP Java *4 AP
NodeJS*4

AP C*4 AP .Net*4 AP Go*4

STRING

BYTES

STRING

CHAR[]

BYTE[]

STRING

BYTE[]

BYTE[] STRING

BYTE[]

STRING

[]BYTE

Supported input data types (by DB
Protectors)

MSSQL Server Oracle DB/2

VARCHAR

CHAR

VARCHAR2

CHAR

VARCHAR CHAR

Supported input data types (by MPP DB
Protectors)

Teradata GPDB IBM Netezza

VARCHAR
LATIN

CHAR LATIN

VARCHAR VARCHAR

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 88

Tokenization Type Properties Settings

Supported input data types (for Big Data
Protectors) *1

MapRedu
ce *3

Hive Pig HBase *3 Impal
a

Spark *3 Spark
SQL

Presto

BYTE[] CHAR*7

STRING

CHA
RARR
AY

BYTE[] STRI
NG

BYTE[]

STRING

STRIN
G

VARCHAR

Return of Protected value Yes

Supported in Protegrity releases 6.6.x – 9.x.x.x

Token specific properties At least one @ character

The right most @ character defines the delimiter between the local and domain parts

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The table lists minimum and maximum length requirements for this token type, which should be applied for the local part, domain part
and the entire e-mail.

*3 – The Protegrity MapReduce protector, HBase coprocessor, and Spark protector only support bytes converted from the string data type.
If any other data type is directly converted to bytes and passed as input to the MapReduce or Spark API that supports byte as input and
provides byte as output, then data corruption might occur. If any other data type is directly converted to bytes and inserted in an HBase
table, which is configured with the Protegrity HBase coprocessor, then data corruption might occur.

*4 – The Protegrity AP Java, AP Python, and AP Golang protectors only support bytes converted from the string data type. If any other data
type is directly converted to bytes and passed as input to the AP Java or AP Python API that supports byte as input and provides byte as
output, then data corruption might occur.

*5 – If the settings for short data tokenization is set to Yes, then the minimum tokenizable length for the local part of an email is one else it
is three.

*6 – If the settings for short data tokenization is set to Yes, then the maximum length for the domain part of an email is 253 else it is 252.

*7 – If you are using the Char tokenization UDFs in Hive, then ensure that the data elements have length preservation selected. In Char
tokenization UDFs, using data elements without length preservation selected, is not supported.

Note:

For Non-US, when using Email token, the From Codepage (FRCODEPG) parameter in PTYPARM file has to be set to the current system
codepage by the system administrator. This is valid for z/OS customers only.

3.4.17.1 Email Token Format

The email address consists of a local part and a domain (local-part@domain). The local part can be up to 64 characters and the
domain name can be up to 254 characters, but the entire email address cannot be longer than 256 characters.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 89

The following table explains e-mail token format input requirements and tokenized output format:

Table 3-60: Output Values for Email Token Format

Local Part

Input value can consist…

Output value can consist…

Commonly used:

• Uppercase and lower case characters through a-z/A-Z

• Digits 0-9

• Special characters !#$%&'*+-/=?^_`|}{~

(ASCII: 33, 35-39, 42, 43, 45, 47, 61, 63, 94-96, 123-126)

• Comments are allowed with parentheses.

Used with restrictions:

• dot character (“.”) when it is not the first or the last and it does not appear
more than one time consecutively

• Special characters (ASCII: 32, 34, 40, 41, 44, 58, 59, 60, 62, 64, 91-93) are
allowed with restrictions.

They must only be used when contained between quotation marks, and that the
three of them (the space (32), backslash (92), and quotation mark (34)) must
also be preceded by a backslash (for example, "\ \\\"").

• International characters above U+007F are permitted by RFC 6531, though
mail systems may restrict which characters to use when assigning local
parts.

The part before “@” sign will be tokenized. The following
will be tokenized:

• All valid characters will be tokenized by the same rules as
alpha-numeric token

• Comments will be tokenized.

The following characters will be considered as delimiters and
not tokenized:

• “.” dot character

• “()” left and right parenthesis

• Special characters in local part.

@ Part

“@” character defines the delimiter between the local and domain parts, and will be left in clear.

Domain Part

Input value can consist…

Output value can consist…

• Letters and digits

• Hyphens and dots

• IP address within square brackets (for example, john.smith@[1.1.1.1])

• Non-ASCII domain (internationalized domain parts)

• Comments are allowed within parentheses

The part after “@” sign will not be tokenized.

Note:

Comments are allowed both in local and domain part of the e-mail token, and comments will be tokenized only if they are in the local part.
Here are the example of comments usage for the e-mail - john.smith@example.com:

• john.smith(comment)@example.com

• "john(comment).smith@example.com"

• john(comment)n.smith@example.com

• john.smith@(comment)example.com

• john.smith@example.com(comment)

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 90

The following table shows examples of the way in which a value will be tokenized with the Email token.

Table 3-61: Tokenization for Email Token Formats

Input Value Tokenized Value Comments

Protegrity1234@gmail.com UNfOxcZ51jWbXMq@gmail.com All characters before @ symbol are tokenized

john.smith!@#@$%$
%^&@gmail.com

hX3p.yDcwD!@#@$%$
%^&@gmail.com

All symbols except alphabetic are distinguish as delimiters

email@protegrity@gmail.com F00CJ@RjDEX9LMDq@gmail.com The right most @ character defines the delimter between the
local and domain parts

q@a asj@a Min 3 symbols in local part for none length preserving tokens

qdd@a S0Y@a Min 5 symbols in local part for length preserving tokens

a@protegrity.com o@protegrity.com Email, SLT_1_3, Length Preservation=Yes, Allow Short
Data=Yes

The local part of the email has at least one character to
tokenize, which meets the minimum length requirement for
SLT_1_3 tokenizer when Length Preservation=Yes and Allow
Short Data=Yes.

a@protegrity.com

email@protegrity.com

a@protegrity.com

F00CJ@protegrity.com

Email, SLT_1_3, Length Preservation=Yes, Allow Short
Data=No, return input as it is

If the input value has less than three characters to tokenize, then
it is returned as is else it is tokenized.

a@protegrity.com Error. Input too short. Email, SLT_1_3, Length Preservation=Yes, Allow Short
Data=No, generate an error

The local part of the email has one character to tokenize, which
is short for SLT_1_3 tokenizer when Length Preservation=Yes
and Allow Short Data=No, generate an error.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Tokenization

Confidential 91

Chapter 4
Protegrity Format Preserving Encryption

4.1 FPE Properties

4.2 Code Points

4.3 Tweak Input

4.4 Left and Right Settings

4.5 Handling Special Numeric Data

4.6 Encryption Algorithm

The Protegrity Format Preserving Encryption (FPE) encrypts input data of specified format and generates output data (ciphertext) of
the same format. The input data is encrypted using a block cipher method of encryption, in which a cryptographic key and algorithm
are applied to a block of data at once, rather than one bit at a time in a typical encryption process. For example, using FPE, a 16-digit
credit card number is encrypted such that the generated ciphertext is another 16-digit number. Since encrypted data retains its original
format with FPE, there is no need for any schema-related changes to the database or application.

Protegrity supports Format Preserving Encryption (FPE) using NIST-approved FF1 (Format preserving, Feistel based, type 1) mode of
operation with AES-256 block cipher encryption algorithm. The input block is divided into two halves and pushed through a Feistel
network for several rounds. If a tweak is mentioned for the encryption, then those digits are skipped and the remaining digits are
passed to the encryption function that encrypts to different values for each round. For FF1, the minimum proposed rounds by NIST are
10.

4.1 FPE Properties
The FPE properties are specified when creating a data element with FPE method. The following table describes the properties
provided by FPE.

Table 4-1: FPE Properties

FPE Property Description

User configured FPE properties

Name Unique name that identifies the FPE data element.

Method FPE NIST 800-38G

NIST 800-38G is the recommended FPE specification by NIST that identifies the supported FPE
cipher.

Plaintext Alphabet Plaintext alphabet type that is to be encrypted. The following data types are supported for encryption:

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 92

FPE Property Description

• Numeric

• Alpha

• Alpha-Numeric

• Unicode Basic Latin and Latin-1 Supplement Alpha

• Unicode Basic Latin and Latin-1 Supplement Alpha-Numeric

The plaintext alphabet maps to code points that denotes a range of accepted characters.

For more information about code point mappings, refer to the section Code points.

Plaintext Encoding Plaintext encoding type that is to be used. The following plaintext encodings are supported:

• ASCII

• UTF-8

• UTF-16LE

• UTF-16BE

For Unicode Basic Latin and Latin-1 Supplement blocks, ASCII encoding is not supported.

Note:

If you are using Format Preserving Encryption (FPE) and Byte APIs, then ensure that the
encoding, which is used to convert the string input data to bytes, matches the encoding that is
selected in the Plaintext Encoding drop-down for the required FPE data element.

Minimum Input Length The minimum supported input length is 2 bytes and configurable up to 10 bytes. The default minimum
supported input length for Credit Card Number (CCN) is 8 bytes and configurable up to 10 bytes.

Tweak Input Mode Tweak input can be derived from the following options:

• Extract from input message

• API Argument

For more information about tweak input mode, refer to section Tweak Input.

From Left Number of characters from left to retain in clear.

For more information about left and right settings, refer to section Left and Right Settings.

From Right Number of characters from right to retain in clear.

For more information about left and right settings, refer to section Left and Right Settings.

Allow Short Data Whether short data is supported or not (Possible options are No, generate error, or No, return input as it
is). This is supported by Numeric and Alpha-Numeric data types only.

The FPE does not support data less than 2 bytes, but you can set the minimum input length value
accordingly.

For more information about short data support, refer to section Length Preserving.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 93

FPE Property Description

Special numeric alphabet handling Specific request for numeric data type with the following options:

• None

• Credit Card Number (CCN)

For more information about numeric alphabet handling, refer to section Handling Special Numeric
Data.

Read-only FPE properties

Ciphertext Alphabet Ciphertext alphabet type that is to be derived. This value is same as the Plaintext Alphabet value.

Ciphertext Encoding Plaintext encoding type that is used. This value is same as the Plaintext Encoding that is used.

Key Input Internally generated

FPE Mode Mode of operation for the block cipher algorithm with FF1 as the supported mode.

Pseudorandom Function (PRF) Block cipher algorithm that is used for encryption with AES-256 as the supported algorithm.

Feistel Rounds 10

Max tweak length The maximum supported tweak input length is 256 bytes.

Support Delimiters Any input other than the supported data type is treated as a delimiter. If the input contains only
delimiters, then the output value is equal to the input.

By default, delimiters are supported for Numeric and Alpha-Numeric data type. Credit Card Number
(CCN) data type doesn’t support delimiters.

Preserve Length The length preservation setting is true for:

• Numeric

• Alpha

• Alpha-Numeric

• Unicode Basic Latin and Latin-1 Supplement Alpha

• Unicode Basic Latin and Latin-1 Supplement Alpha-Numeric

The length preservation setting is false for CCN.

Other FPE properties

Maximum Input Length

(including delimiters)

The following are the maximum input lengths for the supported data types:

• Numeric – 2 GB

• Alpha – 2 GB

• Alpha-Numeric – 2 GB

• Unicode Basic Latin and Latin-1 Supplement Alpha – 2 GB

• Unicode Basic Latin and Latin-1 Supplement Alpha-Numeric – 2 GB

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 94

FPE Property Description

• Credit Card – 4096 bytes

Note:

The recommended maximum input size for the FPE data elements is 4096 characters.

Note:

• The maximum supported input length differs for different protectors based on the input length supported by the protector.

• The maximum input length supported by the PTY.INS_UNICODENVARCHAR2 UDF for the Oracle Database Protectors is 2000
characters.

• The maximum input length supported by the PTY_FPEUNICODEVARCHARINS UDF for the Greenplum Database Protector is 2752
bytes.

• If you are using Format Preserving Encryption (FPE) with Teradata UDFs, you can extend the maximum data length size provided by
these UDFs, which is up to 47407 bytes by default. In this case, the maximum data length size to be allocated for the UDFs can be
modified in the createobjects.sql file for the following functions:

• PTY_VARCHARLATININS

• PTY_VARCHARLATINSEL

• PTY_VARCHARLATINSELEX

The REPLACE_UDFVARCHARTOKENMAX parameter value for these functions can be set up to 64000. Teradata supports the
maximum row size length of approximately 64000 bytes.

For more information, refer to the section Installing UDFs for Teradata in the Installation Guide 9.2.0.0.

• Masking is not supported for data elements created with FPE method and Unicode, Unicode Base64, and Unicode Gen2 as the
plaintext alphabet.

• For FPE data elements, External IV is supported only with ASCII Encoding.

• The string as an input and byte as an output API is unsupported by FPE data elements for the AP Java and AP Python.

• For more information about empty string and NULL handling by protectors, refer to section Appendix C: Empty String Handling by
Protectors and Appendix D: NULL Handling by Protectors.

Table 4-2: Examples for Format Preserving Encryption

Input Value Encrypted Value Comments

123456789012345 187868154999435 Plaintext alphabet – Numeric

Plaintext Encoding – ASCII

Tweak Input – Extract from Input Message

Left=1, Right=1

Allow Short Data = No, return input as it is

Minimum Input Length=3

Protegrity1234567 PyNqSJybYp1234567 Plaintext alphabet – Alpha

Plaintext Encoding – UTF8

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 95

Input Value Encrypted Value Comments

Tweak Input – API Argument

Left=1, Right=0

Allow Short Data = No, generate error

Minimum Input Length=2

Protegrity1234567 ProZSNbyADNoPb2ns Plaintext alphabet – Alpha-Numeric

Plaintext Encoding – UTF16LE

Tweak Input – Extract from Input Message

Left=3, Right=0

Allow Short Data = No, return input as it is

Minimum Input Length=10

43211234567890 76454340562108 Plaintext alphabet – CCN

Plaintext Encoding – ASCII

Tweak Input – Extract from Input Message

Left=0, Right=0

Allow Short Data = No, generate error

Minimum Input Length=9

Invalid Card Type=True

þrõtégrîtÝ@123456789 þràñTÿwõùÞ@123456789 Plaintext alphabet – Unicode Basic Latin and Latin1 Supplement
Alpha

Plaintext Encoding – UTF16LE

Tweak Input – Extract from Input Message

Left=2, Right=1

Allow Short Data = No, generate error

Minimum Input Length=4

þrõtégrîtÝ@123456789 þrWtçjÑHÿÖ@9íKLksvp9 Plaintext alphabet – Unicode Basic Latin and Latin1 Supplement
Alpha-Numeric

Plaintext Encoding – UTF16BE

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 96

Input Value Encrypted Value Comments

Tweak Input – API Argument

Left=2, Right=1

Allow Short Data = No, return input as it is

Minimum Input Length=6

4.2 Code Points
The code points are coded character sets, where each character maps to unique numeric values for representation of that
character. The Unicode Standard is a character encoding system that supports the processing and representation of the text from
diverse languages. The various character encoding schemes, such as UTF-8, UTF-16, etc. accept the character code points as
input and using pre-defined formulas, generates the encoded numeric value. The Unicode code space comprises of 17 planes, that
is, the basic multilingual plane (BMP) and 16 supplementary planes. The BMP contains the most commonly used characters. FPE
supports encryption for BMP with Basic Latin (ASCII) and Latin-1 supplement blocks of characters.

For more information about the Unicode Standard and code points, refer to http://www.unicode.org/ and http://www.unicode.org/
charts/ respectively.

The following table represents the Unicode code points for FPE-supported plaintext alphabet types and encodings.

Table 4-3: Unicode Code Points for FPE-supported Plaintext Alphabet Types

Plaintext Alphabet Plaintext Encoding Codepoint range

Numeric ASCII

UTF-8

UTF-16LE

UTF-16BE

U+0030 - U+0039

Alpha ASCII

UTF-8

UTF-16LE

UTF-16BE

U+0041 - U+005A

U+0061 - U+007A

Alpha-Numeric ASCII

UTF-8

UTF-16LE

UTF-16BE

U+0030 - U+0039

U+0041 - U+005A

U+0061 - U+007A

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 97

http://www.unicode.org/
http://www.unicode.org/charts/
http://www.unicode.org/charts/

Plaintext Alphabet Plaintext Encoding Codepoint range

Unicode Basic Latin and Latin-1 Supplement
Alpha

UTF-8

UTF-16LE

UTF-16BE

U+0041 - U+005A

U+0061 - U+007A

U+00C0 - U+00FF (excluding U+00D7 and
U+00F7)

Unicode Basic Latin and Latin-1 Supplement
Alpha-Numeric

UTF-8

UTF-16LE

UTF-16BE

U+0030 - U+0039

U+0041 - U+005A

U+0061 - U+007A

U+00C0 - U+00FF (excluding U+00D7 and
U+00F7)

4.3 Tweak Input
The tweak input is derived through either of the following methods:

• Extract from input message - If the tweak is set to be derived from input message, then the left and right property settings are
used as a configurable tweak option.

• API argument - If the tweak is set to be derived through API argument, then the tweak value is provided as an input parameter
through the API during the protect or unprotect operation.

The resultant tweak input is zero for the following conditions:

• When extracting the tweak from input message, the left and right property settings are either set or not set to zero.

• When tweak input is to be derived as an API argument, the tweak input parameter is not specified.

Note: The maximum supported tweak input length is 256 bytes.

4.4 Left and Right Settings
This property indicates the number of characters from left and right that will remain in the clear and are excluded from format
preserving encryption.

Note: The sum of left and right properties supports a maximum of 0 through 99 characters. For Unicode multibyte character encoding, the
initial 256 bytes are considered as the tweak input.

4.5 Handling Special Numeric Data
The Format Preserving Encryption(FPE) for Credit Card Number (CCN) is handled by configuring numeric data type as the
plaintext alphabet. The following default settings for CCN are applicable:

• Credit Card Number (CCN) data type does not support delimiters. Hence, the length preservation is false for CCN.

• Short Data Tokenization is not supported by CCN. The CCN supports a minimum input length of 8 bytes.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 98

For more information about Invalid Card Type (ICT), Invalid Luhn, and Alphabet Indicator validation for CCN, refer to
section Credit Card.

4.6 Encryption Algorithm
The Protegrity FPE currently supports encryption using AES-256 block cipher algorithm.

For more information about the AES-256 algorithm, refer to section AES-256.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Format Preserving Encryption

Confidential 99

Chapter 5
Protegrity Encryption

5.1 Encryption Properties (IV, CRC, Key ID)

5.2 Data Length and Padding in Encryption

5.3 Encryption Algorithms

Encryption is the conversion of data into a ciphertext using an algorithmic scheme. The Protegrity solutions can encode data with the
following encryption algorithms:

• Database and Application Protectors - Encryption (3DES, AES-128, AES-256, CUSP)

• Big Data Protectors - Encryption (3DES, AES-128, AES-256). For more information, refer to the table Supported Input Data
Types by Big Data.

• HDFSFP (included in Big Data Protector) - Encryption (3DES, AES-128, AES-256)

Note:

Starting from the Big Data Protector 7.2.0 release, the HDFS File Protector (HDFSFP) is deprecated. The HDFSFP-related sections are
retained to ensure coverage for using an older version of Big Data Protector with the ESA 7.2.0.

• File Protectors - Encryption (3DES, AES-128, AES-256)

Note:

You cannot move the data that is protected using encryption data elements with input as integers, long, or short data types and output as bytes,
between platforms having different endianness.

For example, if the data is protected using encryption data elements with input as integers and output as bytes, then you cannot move the
protected data from the AIX platform to the Linux or Windows platform and vice versa.

Encryption algorithms vary by input and output data types they support. Some preserve length, while others do not. Also, the
minimum allowable length varies between algorithms.

Table 5-1: Encryption Algorithms by supported Length and Output types

Encryption Algorithm Output Preserves

Length

Minimum Length Maximum Length

3DES Binary None Depends on Protector type. For
Database protectors depends on
Database and data types.

AES-128 Binary None

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 100

Encryption Algorithm Output Preserves

Length

Minimum Length Maximum Length

AES-256 Binary None

CUSP 3DES,

CUSP AES-128,

CUSP AES-256

Binary Yes

(No if CRC/Key Id
are used)

None

For Database protection various data types can be used, depending on encryption algorithm and database. The following table
illustrates supported data types by databases.

Table 5-2: Input Data Types Supported by Application Protectors

Encryption Algorithm *1 Application Protector

AP Python*3 AP Java AP C AP NodeJS AP .Net AP Go

3DES

AES-128

AES-256

CUSP 3DES

CUSP AES-128

CUSP AES-256

STRING

BYTES

INT

LONG

FLOAT

string *2

char[] *2

byte[] *2

byte[] BYTE[] BYTE[] BYTE[]

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

*2 – The output type is BYTE[] only. The input type String or Char is supported with the API that provides BYTE[] output type.

*3 – You must pass the encrypt_to=bytes keyword argument to the AP Python protect API for encrypting the data. However, if you are
encrypting or re-encrypting BYTES data, then you do not need to pass the encrypt_to=bytes keyword argument to the protect and reprotect API
respectively.

Table 5-3: Input Data Types Supported by Database Protectors

Encryption Algorithm Database

MSSQL Server Oracle DB/2

3DES

AES-128

varchar

varbinary

varchar2

char

integer

varchar2

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 101

Encryption Algorithm Database

MSSQL Server Oracle DB/2

AES-256

CUSP 3DES

CUSP AES-128

CUSP AES-256

binary

char

numeric

real

float

decimal

int

bigint

smallint

tinyint

datetime

bit

nvarchar

nchar

money

smallmoney

smalldatetime

uniqueidentifier

number

real

float

date

raw

blob

clob

char

number

real

float

date

timestamp

long varchar

double

varchar

numeric

decimal

int

bigint

smallint

tinyint

datetime

character

time

blob

clob

Table 5-4: Input Data Types Supported by MPP Database Protectors

Encryption Algorithm Database

Pivotal GPDB Teradata IBM Netezza

DES

AES-128

AES-256

varchar

integer

decimal

varchar

char

integer

varchar

int

real

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 102

Encryption Algorithm Database

Pivotal GPDB Teradata IBM Netezza

CUSP 3DES

CUSP AES-128

CUSP AES-256

date float

decimal

date

bigint

date

Table 5-5: Input Data Types Supported by Big Data Protectors

Encryption Algorithm
*1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL

3DES

AES-128

AES-256

CUSP 3DES

CUSP AES-128

CUSP AES-256

BYTE[] STRING *3 Not supported BYTE[] STRING

INT

FLOAT

DOUBLE

BYTE[]

STRING *2

Not supported

Note:
*1 - The customer application should convert the input to and output from byte array.

*2 - The input type STRING is supported with the API that provides the BYTE[] output type.

*3 - The string encryption UDFs for Hive are limited to accept 2 GB data size at maximum as input. Ensure that the field size for the protected
binary data post the required encoding does not exceed the 2 GB input limit.

Note:

• Maximum length for Varchar2 data type supported by Protegrity is as follows for these cases:

• VARCHAR2 (1991) – AES without IV and CRC

• VARCHAR2 (1963) – AES with IV and CRC

• VARCHAR2 (1999) – 3DES without IV, CRC and KID

• VARCHAR2 (1979) – 3DES with IV, CRC and KID

• For DB/2, maximum size for blob data type is 100 K, for clob – 5 K.

• When encrypting the Char columns on MS SQL Server, they are converted into Varbinary having limitation up to 2GB of data for each
column.

• For Teradata, maximum length is 64000 for Varchar Latin and 32000 for Varchar Unicode data types.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 103

5.1 Encryption Properties (IV, CRC, Key ID)
For Structured Data (Database protection and Application protection) security policy types, (with the exception of No Encryption
and Hashing) you can specify additional data encryption properties, such as Initialization Vector (IV), Integrity Check (CRC),
and Key ID.

For Unstructured Data (File Protection) security policy type, you can specify the Key ID property.

The following table describes encryption properties.

Table 5-6: Encryption Properties

Feature Description

Initialization Vector (IV) A block of bits required to allow a cipher to be executed in any of several streaming modes of operation
to produce a unique stream, independent from other streams produced by the same encryption key, without
having to go through a (usually lengthy) re-keying process. The size of the IV depends on the encryption
algorithm and on the cryptographic protocol in use and is normally as large as the block size of the cipher
or as large as the encryption key. The IV must be known to the recipient of the encrypted information to be
able to decrypt it.

Encrypting the same value with the IV property will result in different crypto text for the same value.

Integrity Check (CRC) A type of function that takes as input a data stream of any length and produces as output a value of a certain
fixed size. A CRC can be used as a checksum to detect alteration of data during transmission or storage.

Key ID Identifier that associates encrypted data with the protection method so that the data can be decrypted
regardless of where it ultimately resides. A data element can have multiple instances of key IDs associated
with it. For more information, refer to the following Key IDs section.

5.1.1 Key IDs

Data elements can have key IDs associated with them. Key IDs are a way to correlate a data element with its encrypted data. They
facilitate these tasks related to the management of sensitive data: archiving, data movement, and key rotation.

Note: Key IDs can only be used with data elements that use AES, 3DES, or CUSP algorithms for Database and Application protection, and
AES, 3DES for File protection. In Database and Application protection, Key ID becomes part of the encrypted value (for details on cipher
text format, refer Data Length and Padding in Encryption). In File protection, Key ID is separated from the encrypted data and stored in
meta info of the encrypted file.

Key IDs make cryptographic text portable, which means that no matter where the encrypted data ultimately resides (such as in
an archive), it retains the reference back to ESA. With key IDs, the ESA system will always know what protection methods were
applied, so the data can be decrypted.

A data element defined to use key IDs can have multiple instances of keys associated with it. The system retains all key IDs and
distinguishes them by their numerical identifier and state. Key IDs remain in the system and cannot be deleted so that no matter
what happens to the encrypted data, it can be decrypted by way of its key ID.

The following table describes the key ID states.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 104

Table 5-7: Key ID States

Feature Description

Pre-Active The initial state of a key that is created by the Create Key option.

Active A key becomes Active once it is distributed to a PEP server by deploying the data security policy.

Deactivated An Active key becomes automatically Deactivated when the data security policy is redeployed with a new
Pre-Active key.

For more information about key ID property creation and management, refer to Protegrity Enterprise Security Administrator
Guide 9.2.0.0.

Table 5-8: Examples of Encryption Properties for AES-256 algorithm (initial value is “Protegrity”)

Encryption Property Encrypted Values Comments

AES-256-IV 0x1361D69E18A692507895780C2FB26DD7869979CC1
BB6612A994B5EA5585FCF0B

0xE2D579E937EE92C67167749151B30809A538CC6A6
871B8D9B0C17FBA6F1A8D94

Encrypting the same value with the IV property resulted
in different output values. Decrypt will be performed
correctly for both values.

AES-256-CRC 0x7A0C701B4B30E6BF141196FE44F125BD

0x3964DD0ACAF5B39D159BE7518B46D84A8DCC0B6
2F2183B3888FEF82B65C7F87D

The first value is a result of encryption ‘Protegrity1’.
The second value is a result of encryption
‘Protegrity12’. Length of the output value is extended
twice though initial value increased only in 1 character.

AES-256-KeyID 0x200936F85C3BD86F008A57C3DF33F200BC42

0x20157C0E98A1C9E4E6F4D1DCB6FE72B2DA69

Key ID of the first value equals to 9 (0x2009 in HEX),
key ID of the second value equals to 21 (0x2015 in
HEX)

5.2 Data Length and Padding in Encryption
Cipher text produced by the Database and Application Protectors are formatted in a specific way depending on which encryption
properties are being used.

Encryption algorithms that operate on blocks of data (block ciphers) require padding. The block size for AES is 16 bytes, and for
DES/3DES it is 8 bytes. The input is always padded even if it’s already a multiple of the block size. Padding is done in such way
that the input data together with the checksum (if such setting is turned on) will be equal to the algorithm’s block size.

If the initialization vector (IV) property is turned on, then the system generates an IV value that is used to seed the input before it
is encrypted. The IV is then appended to the cipher text.

When the Key ID property is turned on there will be an extra 2 bytes in the beginning of the cipher text. This piece of information
contains the reference to the Key ID that was used to produce the cipher text.

5.2.1 Ciphertext Format

The length of encrypted value for non-length-preserving encryption (3DES, AES-128, AES-256) depends on block size of initial
data, and encryption properties used (KeyID, CRC, IV).

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 105

Figure 5-1: Ciphertext format

Examples of data length calculation by column types are provided in Appendix B: Examples of Column Sizes Calculation for
Encryption

5.3 Encryption Algorithms
The Database, Application, and Big Data Protectors can use 3DES, AES-128, AES-256, and CUSP encryption algorithms. For
more information about data types supported by Big Data, refer to the table Supported Input Data Types by Big Data.

The 3DES, AES-128, and AES-256 encryption algorithms can also be used with File Protectors and HDFSFP.

Note:

Starting from the Big Data Protector 7.2.0 release, the HDFS File Protector (HDFSFP) is deprecated. The HDFSFP-related sections are
retained to ensure coverage for using an older version of Big Data Protector with the ESA 7.2.0.

Note:

The Maximum Length that can be encrypted by the different algorithms is mentioned as 2147483610 bytes in the following tables in
section 3DES and section AES-128 and AES-256.

Note that this length varies from protector to protector and depends on database configuration, database limitation, and the protection
method used.

5.3.1 3DES

The 3DES (Triple Data Encryption Standard) algorithm applies the DES algorithm, the first USA national standard of block
ciphering, three times to each data block. The 3DES cipher key size is 168 bits, compared to 56 bits key of DES. The 3DES
algorithm, using the DES cipher algorithm, provides a simple method of data protection.

Note: It is recommended to install the IBM z/OS hotfix PI32471 for DB2 before using the FIELDPROC module with non-CUSP
algorithms.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 106

Table 5-9: 3DES Encryption Algorithm Properties

Properties

Name 3DES

Operation Mode EDE3 CBC - triple CBC DES encryption with three keys.

CBC = Cipher Block Chaining.

EDE = E(ks3,D(ks2,E(ks1,M)))

E=Encrypt

D=Decrypt

Encryption Properties (IV, CRC, Key ID) Database and Application protectors: IV, CRC, Key ID (Key ID is
the part of the encrypted data)

File protectors (including HDFSFP): only Key ID (Key ID is
separated from the encrypted data and stored in the meta info of
encrypted file)

Note:

Starting from the Big Data Protector 7.2.0 release, the HDFS
File Protector (HDFSFP) is deprecated. The HDFSFP-related
sections are retained to ensure coverage for using an older
version of Big Data Protector with the ESA 7.2.0.

Big Data protectors: IV, CRC, Key ID (Key ID is the part of the
encrypted data)

Length Preservation (padding formula for non-length preserving
algorithms)

No

For explanation on calculating data length, refer to the section Data
Length and Padding in Encryption

Minimum Length None

Maximum Length 2147483610 bytes

Input type /character set Vary across DBs

Refer to the table Supported Input Data Types by Application
Protectors for supported data types.

Output type /character set Binary

Return of Protected value No

Specifics of algorithm A block cipher with 168 bit key

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 107

Properties

Supported in Protegrity releases 6.6.x - 9.1.0.x

The following table shows examples of the way in which the value ‘Protegrity’ will be encrypted with the 3DES algorithm.

Table 5-10: 3DES Encryption Examples

Encryption
Algorithm

Output Value Comments

3DES 0x4AA7402C77808D80D093A15A51318D19 The input value of 10 bytes is padded to become 16 (2
blocks of 8 bytes). The output value is 16 bytes.

3DES-CRC 0xF1B7EFD118D27E5568AB192CE2A12E35 The input value of 10 bytes with checksum of 4 bytes
is padded to become 16 (2 blocks of 8 bytes). The
output value is 16 bytes.

3DES-IV 0x5126D8EB02A213922FB7E6DEDA861ABF661A01AEF7
CAEC86

8 bytes IV is added. The output value is 24 bytes (3
blocks of 8 bytes).

3DES-KeyID 0x200479E1CC7983040987362DA49DD68B6E16 2 bytes-Key ID is added. The output value is 18 bytes.

3DES-IV-CRC-KeyID 0x20055B72BF6E9B55B799A9DF51587E93ED8CF42E48A
80F9474C0

The input value of 10 bytes with checksum of 4 bytes
is padded to 16 bytes. IV of 8 bytes and Key ID of 2
bytes are added.

The output value is 26 bytes.

5.3.2 AES-128 and AES-256

The Advanced Encryption Standard (AES) is an encryption algorithm for electronic data that was established by the U.S.
National Institute of Standards and Technology (NIST) in 2001.

AES is based on a substitution-permutation network design principle, and is fast in both software and hardware.

AES is used in three versions: AES-128, AES-192, and AES-256. These numbers represent the encryption key sizes (128 bits,
192 bits, and 256 bits) and in their number of rounds (10, 12, and 14, respectively) required to open the vault that is wrapped
around the data.

The Protegrity solutions work with AES-128 and AES-256 encryption algorithms.

Note: It is recommended to install the IBM z/OS hotfix PI32471 for DB2 before using the FIELDPROC module with non-CUSP
algorithms.

5.3.2.1 AES-128

AES-128 is a version of AES encryption algorithm that has a fixed block size of 16 bytes and a key size of 128 bits.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 108

Table 5-11: AES-128 Encryption Algorithm Properties

Properties

Name AES-128

Operation Mode CBC – Cipher Block Chaining

Encryption Properties (IV, CRC, Key ID) Database and Application protectors: IV, CRC, Key ID (Key ID is the part of the
encrypted data)

File protectors (including HDFSFP): only Key ID (Key ID is separated from the
encrypted data and stored in the meta info of encrypted file)

Note:

Starting from the Big Data Protector 7.2.0 release, the HDFS File Protector
(HDFSFP) is deprecated. The HDFSFP-related sections are retained to
ensure coverage for using an older version of Big Data Protector with the
ESA 7.2.0.

Big Data protectors: IV, CRC, Key ID (Key ID is the part of the encrypted data)

Length Preservation (padding formula for non-length
preserving algorithms)

No

For explanation on calculating data length, refer to the section Data Length and
Padding in Encryption.

Minimum Length None

Maximum Length 2147483610 bytes

Input type /character set Vary across DBs

Refer to the table Supported Input Data Types by Application Protectors for
supported data types.

Output type /character set Binary

Return of Protected value No

Specifics of algorithm A block cipher with 128 bit key

Supported in Protegrity releases 6.6.x – 8.x.x.x

The table shows examples of the way in which the value ‘Protegrity’ will be encrypted with the AES-128 algorithm.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 109

Table 5-12: Encryption Examples

Encryption Algorithm Output Value Comments

AES-128 0xA2EA9C9BC53D77BA7F8E85C124296BF3 The input value of 10 bytes is padded to become 16 (1
block of 16 bytes). The output value is 16 bytes.

AES-128-CRC 0x86315F21FA70F7AC1A7D9DB04B22C87A The input value of 10 bytes with checksum of 4 bytes
is padded to become 16 (1 block of 16 bytes). The
output value is 16 bytes.

AES-128-IV 0x0560F196024CCD1CD8213C6657B1BB58CE3047C316
EC300BB0BF3C3F5949C157

16 bytes IV is added. The output value is 32 bytes (2
blocks of 16 bytes).

AES-128-KeyID 0x2002E3DE3D7AB6CCBEB96A6A60248559C094 2 bytes Key ID is added. The output value is 18 bytes.

AES-128-IV-CRC-
KeyID

0x20031F55A327AFD11DA9E0FEA2499484825E2EABC
2B28D162737E867BE0726E7131F

The input value of 10 bytes with checksum of 4 bytes
is padded to 16 bytes. IV of 16 bytes and Key ID of 2
bytes are added.

The output value is 34 bytes.

5.3.2.2 AES-256

AES-256 is a version of AES encryption algorithm that has a fixed block size of 16 bytes and a key size of 256 bits.

Table 5-13: AES-256 Encryption Algorithm Properties

Properties

Name AES-256

Operation Mode CBC – Cipher Block Chaining

Encryption Properties (IV, CRC, Key ID) Database and Application protectors: IV, CRC, Key ID (Key ID is the part
of the encrypted data)

File protectors (including HDFSFP): only Key ID (Key ID is separated
from the encrypted data and stored in the meta info of encrypted file)

Note:

Starting from the Big Data Protector 7.2.0 release, the HDFS File
Protector (HDFSFP) is deprecated. The HDFSFP-related sections are
retained to ensure coverage for using an older version of Big Data
Protector with the ESA 7.2.0.

Big Data protectors: IV, CRC, Key ID (Key ID is the part of the encrypted
data)

Length Preservation (padding formula for non-length preserving
algorithms)

No

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 110

Properties

For explanation on calculating data length, refer to section Data Length
and Padding in Encryption.

Minimum Length None

Maximum Length 2147483610 bytes

Input type /character set Vary across DBs

Refer to the table Supported Input Data Types by Application Protectors
for supported data types.

Output type /character set Binary

Return of Protected value No

Specifics of algorithm A block cipher with 256 bit key

Supported in Protegrity releases 6.6.x – 8.x.x.x

The following table shows examples of the way in which the value ‘Protegrity’ will be encrypted with the AES-256 algorithm.

Table 5-14: AES-256 Encryption Examples

Encryption Algorithm Output Value Comments

AES-256 0x0A4771DAD552DA29512BE13BCCF2538A The input value of 10 bytes is padded to become 16
(1 block of 16 bytes). The output value is 16 bytes.

AES-256-CRC 0x29445B1AEED293D341E9634BD7B7BA4C The input value of 10 bytes with checksum of 4
bytes is padded to become 16 (1 block of 16 bytes).
The output value is 16 bytes.

AES-256-IV 0x2C9D5D8AF80C4614F2C6D063A94BB624C19B14EB40
C919F7053DA636ACAE3BEE

16 bytes IV is added. The output value is 32 bytes (2
blocks of 16 bytes).

AES-256-KeyID 0x20157C0E98A1C9E4E6F4D1DCB6FE72B2DA69 2 bytes Key ID is added. The output value is 18
bytes.

AES-256-IV-CRC-
KeyID

0x200AA6570EBA6A866F985839C4C189038705C6FC48B
2459650940904E76009E300D2

The input value of 10 bytes with checksum of 4
bytes is padded to 16 bytes. IV of 16 bytes and Key
ID of 2 bytes are added.

The output value is 34 bytes.

5.3.3 CUSP

CUSP (Cryptographic Unit Service Provider) is a special type of CBC mode documented in the z/OS ICSF Application
Programmer's Guide (SA22-7522). It is used for handling data with length that is not a multiple of the key block length. It is

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 111

often used when you want to maintain the original length of the data. The length of encrypted data in CUSP mode will always
equal the length of clear text data.

CUSP is best suited for varying types of environments and usage scenarios. For very small-sized data, encrypting with a
stream cipher such as CUSP could result in reduced security because it may not include an initialization vector (IV). CUSP is
appropriate if the data is greater than one block in size. Larger amounts of data encrypted with CUSP are secure because the
CUSP algorithm uses standard chaining block ciphering for the cipher block size pieces of data. For the final data piece less than
a cipher block, the CUSP algorithm uses a generated initialization IV only.

The CUSP mode of encryption is not certified by NIST. It is therefore not a part of the NIST standards, or of any other generally
accepted body of standards, and has not been formally reviewed by the cryptographic community. Therefore, the use of CUSP
mode would be outside the scope of most data security regulations.

Protegrity supports CUSP encryption for z/OS products (prior to version 5.0, CUSP was the default algorithm for z/OS). In
the 5.5 release, the support was expanded to Database and Application protectors of all other supported platforms to keep
compatibility with z/OS protectors. From 6.6.x, Big Data Protector for Hadoop also supports this encryption method.

Protegrity supports three types of CUSP encryption: CUSP 3DES, CUSP AES-128, and CUSP AES-256. CUSP 3DES uses a
3DES key with the CUSP expansion to the 3DES algorithm. Data is CBC encrypted in 8 byte blocks and any remaining data is
stream ciphered using the same 3DES key with an IV of a double encrypted last full block. CUSP AES-128 and CUSP AES-256
CBC encrypt data in 16 byte blocks with any remaining data stream ciphered using the same AES key with an IV of a double
encrypted last full block. AES-128 uses a 128 bit key and AES-256 uses a 256 bit key.

Note: If you use the CUSP data element to process long data, then protect and unprotect operations might take more processing time than
expected.

Table 5-15: CUSP Encryption Algorithm Properties

Properties

Name CUSP 3DES

CUSP AES-128

CUSP AES-256

Operation Mode CBC – Cipher Block Chaining, combined with ECB - Electronic codebook

Encryption Properties (IV, CRC, Key ID) CRC, Key ID

Length Preservation (padding formula for non-length
preserving algorithms)

Yes

(No if CRC and Key ID are used)

Minimum Length None

Maximum Length 2147483610 bytes

Input type /character set Vary across DBs

Refer to the table Supported Input Data Types by Application Protectors for
supported data types.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 112

Properties

On z/OS protectors all input data is treated as binary.

For FIELDPROC, DB2 restricts the input data to character or varchar.

Output type /character set Binary

Return of Protected value No

Specifics of algorithm A modified block algorithm mainly used in environments where an IBM
mainframe is present.

Supported in Protegrity releases From 6.6.x onwards for z/OS.

Note:

z/OS file protection programs support CUSP, if database or application
protector policy is used.

From 6.6.x onwards for Database and Application Protectors.

From 6.6.x onwards for Big Data Protector for Hadoop.

The following table shows examples of the way in which the value ‘Protegrity’ will be encrypted with the CUSP algorithm.

Table 5-16: CUSP Encryption Examples

Encryption Algorithm Output Value Comments

CUSP 3DES 0xD7DE903612B29BA825B4 Length of the output value is the same as input
value (10 bytes) as CUSP preserves length.

CUSP AES-128 0x1D95BEFC71590AA7B5C3

CUSP AES-256 0x1C7244BB85827D36435D

CUSP 3DES - CRC 0x7920A9AF0CEE96E1C4EDB8F5E9EF 4 bytes checksum is added. The output value is
14 bytes.

CUSP 3DES - KeyID 0x200525200D62B05DCB17E8DB 2 bytes Key ID is added. The output value is 12
bytes.

CUSP 3DES - CRC-KeyID 0x20068C2A54ACB80DB3C3332421B8851B 4 bytes checksum and 2 bytes Key ID are added.
The output value is 16 bytes.

Protegrity Protection Method Reference Guide 9.2.0.0 Protegrity Encryption

Confidential 113

Chapter 6
No Encryption
The No Encryption protection method when applied lets sensitive data be stored in the clear, but either monitors or masks its usage
through a data security policy.

With the Monitor method, the sensitive data is accessible by users but its usage is monitored through audit logs that are generated at
the protection point and are then delivered to the centrally administered ESA Appliance.

With the Masking method, the users who should not use sensitive assets can be prevented from receiving this data, even if the data is
stored in the clear.

Both monitoring and masking are controlled by the security officer from the centrally administered ESA Appliance. The No
Encryption method is highly transparent, which means that the implementation of this method does not cause many changes in the
target environment.

The No Encryption data element is created in combination with the Masks option. The Masks option helps define how the masked
data output format must be visible to users.

The key difference between masking enabled through a No Encryption data element and masking enabled through a Masking data
element is that in the former case, data is always in clear for all roles unless configured to appear masked for unauthorized users, while
in the latter case data is always in masked for all users unless configured to appear in clear for authorized users.

For more information about creating masks, refer to the section Masks.

Note: If you are reprotecting data using the No Encryption method, then the reprotect operation fails in the following scenarios:

• If the data was previously protected using a tokenization or encryption method.

• If the user performing the reprotection of data does not have the unprotect privileges on the data element that was used to protect the data.

Table 6-1: No Encryption Algorithm Properties

Properties

Name No Encryption

Operation Mode N/A

Encryption Properties (IV, CRC, Key ID) No

Length Preservation (padding formula for non-length preserving
algorithms)

Yes

Minimum Length None

Maximum Length ≥500 bytes

Input type /character set Vary across DBs.

For supported data types, refer to the table Supported Input Data Types
by Database.

Protegrity Protection Method Reference Guide 9.2.0.0 No Encryption

Confidential 114

Properties

Output type /character set Output type is the same as the input type, e.g. input type: integer ->
output type =integer

Return of Protected value No

Specifics of algorithm Does not protect data at rest by changing it. Protection comes from
monitoring and masking.

Supported in Protegrity releases 6.6.x-8.x.x.x

Supported for Database and Application protection

For Database protection various data types can be used for No Encryption. The following table illustrates the supported data types by
databases.

Table 6-2: Input Data Types Supported by Application Protectors

Protection Method*1 Application Protectors

AP Python AP Java AP C AP .Net AP NodeJS AP Go

NoEncryption STRING

BYTES

FLOAT

INT

short

int

long

float

double

string

char[]

byte[]

byte[] STRING

BYTE[]

STRING

BYTE[]

STRING

BYTE[]

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

Table 6-3: Input Data Types Supported by Database Protectors

Protection Method Database

MSSQL Server Oracle DB/2

NoEncryption varchar

varbinary

binary

varchar2

char

number

varchar2

char

number

Protegrity Protection Method Reference Guide 9.2.0.0 No Encryption

Confidential 115

Protection Method Database

MSSQL Server Oracle DB/2

char

numeric

real

float

decimal

int

bigint

smallint

tinyint

datetime

bit

nvarchar

nchar

money

smallmoney

smalldatetime

uniqueidentifier

real

float

date

raw

blob

clob

real

float

date

timestamp

long varchar

double

varchar

numeric

decimal

int

bigint

smallint

tinyint

datetime

character

time

blob

clob

Table 6-4: Input Data Types Supported by MPP Database Protectors

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

NoEncryption varchar

integer

decimal

date

varchar

char

integer

float

decimal

varchar

int

real

date

Protegrity Protection Method Reference Guide 9.2.0.0 No Encryption

Confidential 116

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

date

bigint

Table 6-5: Input Data Types Supported for Big Data Protectors

Protection Method
*1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL

NoEncryption BYTE[]

INT

LONG

CHAR

STRING

FLOAT

DOUBLE

INT

BIGINT

HIVEDECIM
AL

CHARARRAY

INT

BYTE[] STRING

INT

FLOAT

DOUBLE

BYTE[]

STRING

FLOAT

DOUBLE

SHORT

INT

LONG

STRING

FLOAT

DOUBLE

SHORT

INT

LONG

BIGDECIMAL *2

Note:
*1 - The customer application should convert the input to and output from byte array.

*2 - If decimal format data is protected by the Decimal UDFs using the No Encryption data element, then the protected data is trimmed to the
scale of 18 digits.

The following table shows examples of the way in which a value will be protected with the No Encryption algorithm.

Table 6-6: Output Values for No Encryption Algorithm

Protection Method Roles in Data
Element

Input Value Output Value Comments

No Encryption None Protegrity Protegrity The value is stored in the clear.

Protegrity Protection Method Reference Guide 9.2.0.0 No Encryption

Confidential 117

Chapter 7
Monitor
The Monitor protection method is generally used for auditing. As an organization, if you plan to monitor and assess users that are
trying to access the data without protection, choose the Monitor protection method. This element does not restrict any data security
operation for any user, but instead audits attempts to add, access, or change data by users. The audit logs generated at the protection
point are forwarded to the log management system.

Note:

When you protect data, the following error message is displayed,

The user does not have the appropriate permissions to perform the requested operation

if:

• masking or monitoring data elements are configured in the policy, and

• username is not specified in the policy

Attention: Due to a limitation, when you unprotect data, a warning severity is returned instead of an error.

Similar to the No Encryption method, implementation of the Monitor method does not cause many changes in the target environment.

Table 7-1: Monitor Algorithm Properties

Properties

Name Monitor

Operation Mode N/A

Encryption Properties (IV, CRC, Key ID) No

Length Preservation (padding formula for non-length preserving
algorithms)

Yes

Input type /character set Vary across DBs.

For supported data types, refer to the table Supported Input Data Types
by Database.

Output type /character set Output type is the same as the input type, e.g. input type: integer ->
output type =integer

Return of Protected value No

Specifics of algorithm Does not protect data at rest by changing it. Used for monitoring and
auditing.

Supported in Protegrity releases 7.x-8.x.x.x

Supported for DSG, Database, Application protectors, and Data Security
Gateway

Protegrity Protection Method Reference Guide 9.2.0.0 Monitor

Confidential 118

For Database protection, various data types can be used for Monitor method. The following table illustrates the supported data types
by databases.

Table 7-2: Input Data Types Supported by Application Protectors

Protection Method*1 Application Protectors

AP Python AP Java AP C AP .Net AP NodeJS AP Go

Monitor STRING

BYTES

FLOAT

INT

short

int

long

float

double

string

char[]

byte[]

byte[] STRING

BYTE[]

STRING

BYTE[]

STRING

BYTE[]

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

Table 7-3: Input Data Types Supported by Database Protectors

Protection Method Database

MSSQL Server Oracle DB/2

Monitor varchar

varbinary

binary

char

numeric

real

float

decimal

int

varchar2

char

number

real

float

date

raw

blob

clob

varchar2

char

number

real

float

date

timestamp

long varchar

double

Protegrity Protection Method Reference Guide 9.2.0.0 Monitor

Confidential 119

Protection Method Database

MSSQL Server Oracle DB/2

bigint

smallint

tinyint

datetime

bit

nvarchar

nchar

money

smallmoney

smalldatetime

uniqueidentifier

varchar

numeric

decimal

int

bigint

smallint

tinyint

datetime

character

time

blob

clob

Table 7-4: Input Data Types Supported by MPP Database Protectors

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

Monitor varchar

integer

decimal

date

varchar

char

integer

float

decimal

date

bigint

varchar

int

real

date

Protegrity Protection Method Reference Guide 9.2.0.0 Monitor

Confidential 120

Table 7-5: Input Data Types Supported by Big Data Protectors

Protection Method
*1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL

Monitor BYTE[]

INT

LONG

CHAR

STRING

FLOAT

DOUBLE

INT

BIGINT

HIVEDECIM
AL

CHARARRAY

INT

BYTE[] STRING

INT

FLOAT

DOUBLE

BYTE[]

STRING

FLOAT

DOUBLE

SHORT

INT

LONG

STRING

FLOAT

DOUBLE

SHORT

INT

LONG

BIGDECIMAL *2

Note:
*1 - The customer application should convert the input to and output from byte array.

*2 - If decimal format data is protected by the Decimal UDFs using the Monitor data element, then the protected data is trimmed to the scale of
18 digits.

The following table shows examples of the way in which a value will be protected with the Monitor algorithm.

Table 7-6: Output Values for Monitor Algorithm

Protection Method Input Value Output Value Comments

Monitor Protegrity Protegrity The value is stored in the clear. An audit log is
generated.

Protegrity Protection Method Reference Guide 9.2.0.0 Monitor

Confidential 121

Chapter 8
Masking

8.1 Masks

For situations where data output restrictions must be applied for users, the Masking method can be used.

As an organization, if you plan to restrict access such that only users with required privileges can view sensitive data, while other users
view masked data, the Masking method can be used. Considering the sensitive data is residing in protection endpoint in clear, based on
how the Masking data element is configured, users are granted view access. The masking data element as a default considers all users
as restricted users and displays masked sensitive data. If any user must be granted access to view clear data, then it must be configured
through roles.

For example, consider policy users user1 and user2 trying to access CCN data. As default, when the masking policy is created, both
users view the CCN data in masked format, such as ****45856655****. If the user1 is granted privilege to view data in clear, then
user1 view the CCN data in clear while the user2 still sees masked CCN data.

The key difference between masking enabled through a No Encryption data element and masking enabled through a Masking data
element is that in the former case, data is always in clear for all users unless configured to appear masked for unauthorized users,
while in the latter case data is always in masked for all users unless configured to appear in clear for authorized users.

Similar to the No Encryption method, implementation of the Masking method does not cause any changes in the target environment.

The Masking data element is created in combination with the Masks option. The Masks option helps define how the masked data
output format must be visible to users.

For more information about creating masks, refer to the section Masks.

Note:

When you protect data, the following error message is displayed,

The user does not have the appropriate permissions to perform the requested operation

if:

• masking or monitoring data elements are configured in the policy, and

• username is not specified in the policy

Attention: Due to a limitation, when you unprotect data, a warning severity is returned instead of an error.

Table 8-1: Masking Algorithm Properties

Properties

Name Masking

Protegrity Protection Method Reference Guide 9.2.0.0 Masking

Confidential 122

Properties

Operation Mode N/A

Encryption Properties (IV, CRC, Key ID) No

Length Preservation (padding formula for non-length preserving
algorithms)

Yes

Input type /character set Vary across DBs.

For supported data types, refer to the table Supported Input Data Types
by Database.

Output type /character set Output type is the same as the input type, e.g. input type: integer ->
output type =integer

Return of Protected value No

Specifics of algorithm Does not protect data at rest by changing it. Protection comes from
masking.

Supported in Protegrity releases 6.6.x-8.x.x.x

Supported for Database and Application protectors

Supported for Data Security Gateway

For Database protection various data types can be used for Masking method. The following table illustrates supported data types by
databases.

Table 8-2: Input Data Types Supported by Application Protectors

Protection Method*1 Application Protectors

AP Python AP Java AP C AP .Net AP NodeJS AP Go

Masking STRING

BYTES

FLOAT

INT

short

int

long

float

double

string

char[]

byte[]

byte[] STRING

BYTE[]

STRING

BYTE[]

STRING

BYTE[]

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

Protegrity Protection Method Reference Guide 9.2.0.0 Masking

Confidential 123

Table 8-3: Input Data Types Supported by Database Protectors

Protection Method Database

MSSQL Server Oracle DB/2

Masking varchar

varbinary

binary

char

numeric

real

float

decimal

int

bigint

smallint

tinyint

datetime

bit

nvarchar

nchar

money

smallmoney

smalldatetime

uniqueidentifier

varchar2

char

number

real

float

date

raw

blob

clob

varchar2

char

number

real

float

date

timestamp

long varchar

double

varchar

numeric

decimal

int

bigint

smallint

tinyint

datetime

character

time

blob

clob

Table 8-4: Input Data Types Supported by MPP Database Protectors

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

Masking varchar varchar varchar

Protegrity Protection Method Reference Guide 9.2.0.0 Masking

Confidential 124

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

integer

decimal

date

char

integer

float

decimal

date

bigint

int

real

date

Table 8-5: Input Data Types Supported for Big Data Protectors

Protection Method
*1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL

Masking BYTE[] CHAR

STRING

CHARARRAY BYTE[] STRING BYTE[]

STRING

STRING

Note:
*1 - The customer application should convert the input to and output from byte array.

The following table shows examples in which a value will be protected with the Masking algorithm.

Table 8-6: Output Values for Masking Algorithm

Protection Method Roles in Data
Element

Input Value Output Value Comments

Masking None Protegrity ****egrity The value is displayed in masked
format.

exampleuser1 with
Unprotect access
and masking
selected

Protegrity • All users -

****egrity

• exampleuser1 -

Protegrity

The value is stored in the clear.

Any other user apart from
exampleuser1 will see masked
content.

8.1 Masks
The Masks option is a data output restriction that is used in combination with the tokenization, encryption, no encryption, and
masking protection methods.

Protegrity Protection Method Reference Guide 9.2.0.0 Masking

Confidential 125

Masks define data output formatting, which means what data to disclose to users that want to view the data. The formatting
includes decrypting and transforming the result in a way that part of it is obfuscated. For example, a masked social security
number could look like: 12345****, or ***456789.

Using a mask for the output is optional. If none is specified, then all data is returned in the masked output format by default
for all users who are not a part of any policy. If users are a part of the policy, then data is shown in the clear in case of a No
Encryption data element and in masked output format in case of Masking data element.

Masks are defined in the ESA and have the following properties:

• Mask name and description

• Number of characters from left

• Number of characters from right

• Whether ‘left’ and ‘right’ should be masked or clear

• Specific mask character (*,#,-,0,1,2,3,4,5,6,7,8, or 9).

The mask definition or how the mask looks like is implemented as a per role and data element combination. This means that one
data element can have multiple mask definitions.

When a mask is applied to data that is too short, that is, the data will not match to what has been defined in the mask, everything
gets masked. For example, if a mask of 6 from the left and 2 from the right will be applied to data that has a length of 4, such as a
name John, then all four characters will be masked.

Important:

If a user role is included in multiple policies with masks, then the masks may conflict in one of the following conditions:

• The user has different mask settings for both roles for the same data element. In this case, the user's access rights to the data element
with the conflicting masks are revoked.

• The user has the data element with a mask in a role and another with no mask settings in the other role. In this case, the user's access
rights to the data element is set to the role with no mask settings.

For detailed information about masking rules for users in multiple roles with different scenarios, refer to the section 4.3.5
Masking Rules for Users in Multiple Roles in the Policy Management Guide 9.2.0.0.

Masking can only apply to character data. If a data element with masking is used on non-character data, then the masking is
ignored.

Important:

It is not recommended to use Masking with multibyte encodings, such as UTF-8, UTF-16, and so on, as it might corrupt the data.

Sample Protected Data: ����� �� �������
Left and Right Masking settings: L-3 and R-3
Unprotected Data with Mask applied: ##?��� �� �����?##

Sample Protected Data: ����� �� �������
Left and Right Clear settings: L-3 and R-3
Unprotected Data with Mask applied: �?###### #### ##########?�

In the above case, the masked unprotected value is distorted as every character in the input is represented by 2 bytes and we are trying to
preserve the first 3 bytes from the left and 3 bytes from the right, which results in a distorted output.

Protegrity Protection Method Reference Guide 9.2.0.0 Masking

Confidential 126

The following table shows examples of the way in which Masks can be used in combination with other protection methods.

Table 8-7: Examples of Masks

Protection Method/ Mask Input Value Output Value Comments

CCN 6x4

Left=6, Right=4, Clear, *

4537432557929840 453743******9840 Pre-defined mask , exposes the first 6
characters and last 4 characters

CCN 12x0

Left=12, Right=0, Mask, *

4537432557929840 ************9840 Pre-defined mask , hides the first 12 characters

CCN 4x4

Left=4, Right=4, Clear, *

4537432557929840 4537********9840 Pre-defined mask , exposes the first 4
characters and last 4 characters

CCN 6x4

Left=6, Right=4, Clear, 1

4537432557929840 4537431111119840 Pre-defined mask, exposes the first 6 characters
and last 4 characters

SSN x-4

Left=0, Right=4, Clear, *

721-07-4426 *******4426 Pre-defined mask , exposes the last 4 characters

SSN 5-x

Left=5, Right=0, Clear, *

72107-4426 72107***** Pre-defined mask , exposes the first 5
characters

SSN 5-x

Left=5, Right=0, Clear, 0

72107-4426 7210700000 Pre-defined mask, exposes the first 5 characters

CustomMask1

Left=6, Right=0, Mask, #

721-07-4426 ######-4426 Custom mask, illustrates usage of ‘#’ mask
character

CustomMask2

Left=4, Right=4, Mask, -

4537432557929840 ----43255792---- Custom mask, illustrates usage of ‘-’ mask
character

CustomMask3

Left=4, Right=4, Mask, 8

4537432557929840 8888432557928888 Custom mask, illustrates usage of ‘8’ mask
character

Caution: The z/OS Database Protector EDITPROC does not support masking.

Protegrity Protection Method Reference Guide 9.2.0.0 Masking

Confidential 127

Chapter 9
Hashing
Hashing is an alternative to encryption for protecting sensitive data. A hash function is a reproducible method of turning data
into a (relatively) small number that can serve as a digital fingerprint of the data. The algorithm "chops and mixes" (for example,
substitutes or transposes) the data to create these fingerprints. Protegrity uses the HMAC (Hashed Message Authentication Code)
SHA1 algorithm that returns a 160 bit (20 bytes) hash value for any data.

Hashing (HMAC-SHA1) is utilized to transform sensitive data. Unlike encryption, transformed (hashed) data is irreversible as it is
replaced with a checksum and not stored anywhere as an encrypted value. The original data cannot be retrieved back from the hashed
value.

Note: The new data element creation under HMAC-SHA1 is not supported from 9.2.0.0 release. The existing data elements under HMAC-SHA1
will be usable and supported.

Table 9-1: Hashing Protection Algorithm Properties

Properties Keyed hash Algorithm

Name HMAC-SHA1

Operation Mode N/A

Encryption Properties (IV, CRC, Key ID) No

Length Preservation (padding formula for non-length preserving
algorithms)

No

Result is always 20 bytes regardless of input length.

Minimum Length None

Maximum Length ≥ 500 bytes

Input type /character set Vary across DBs

Refer to the table Supported Input Data Types by Database for supported data
types.

Output type /character set Binary

Return of Protected value No

Specifics of algorithm Irreversible protection method. Original data is replaced with a checksum and
cannot be retrieved back, when decrypted.

Protegrity Protection Method Reference Guide 9.2.0.0 Hashing

Confidential 128

Properties Keyed hash Algorithm

Supported in Protegrity releases 6.6.x - 9.1.0.0

Supported for Database and Application protection

For Database protection only varchar/char data types can be used for hashing. The following tables illustrate supported data types by
Protegrity Protectors.

Table 9-2: Supported Input Data Types by Application Protectors

Protection
Method*1

Application Protectors

AP Python AP NodeJS AP Go AP Java AP .Net AP C

HMAC-
SHA1

STRING

BYTES

BYTE[] BYTE[] float

double

string

char[]

byte[]

BYTE[] byte[]

Note:
*1 – If the input and output types of the API are BYTE[], then the customer application should convert the input to and output from the byte
array, before calling the API.

Table 9-3: Supported Input Data Types by Database Protectors

Protection Method Database

MSSQL Server Oracle DB/2

HMAC-SHA1 varchar

char

varchar2

char

varchar2

varchar

char

Table 9-4: Supported Input Data Types by MPP Database Protectors

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

HMAC-SHA1 varchar varchar

char

Not supported

Protegrity Protection Method Reference Guide 9.2.0.0 Hashing

Confidential 129

Protection Method Database

Pivotal GPDB Teradata IBM Netezza

integer

float

Table 9-5: Supported Input Data Types for Big Data

Protection
Method *1

Big Data

MapReduce Hive Pig HBase Impala Spark Spark SQL

HMAC-SHA1 BYTE[] Not supported Not supported BYTE[] Not supported BYTE[] Not supported

Note:
*1 – The customer application should convert the input to and output from byte array.

The following table shows examples of the way in which a value will be replaced with the HMAC-SHA1 hashing type.

Table 9-6: HMAC-SHA1 Hashing Output Values

Protection Method Input
Value

Output Value Comments

HMAC-SHA1 Protegrity 0x5855682AB16B3C818C33CCA382B0F32A00EC2915 Output value cannot be
decrypted

Protegrity Protection Method Reference Guide 9.2.0.0 Hashing

Confidential 130

Chapter 10
Appendix A: ASCII Character Codes
Lower ASCII token – character codes 33-126 (Table A-1)

Printable token – character codes 32-126 (Table A-1), 160-255 (Table A-2)

Unicode token – character codes 32-127 (Table A-1), 128-255 (Table A-2), 0-31 (Table A-3)

Binary token – character codes 32-127 (Table A-1), 128-255 (Table A-2), 0-31 (Table A-3)

Table 10-1: ASCII printable characters (character code 32-127)

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

32 20 (Space) Space 80 50 P Uppercase P

33 21 ! Exclamation mark 81 51 Q Uppercase Q

34 22 " Double quotes (or speech
marks)

82 52 R Uppercase R

35 23 # Number 83 53 S Uppercase S

36 24 $ Dollar 84 54 T Uppercase T

37 25 % Percent sign 85 55 U Uppercase U

38 26 & Ampersand 86 56 V Uppercase V

39 27 ' Single quote 87 57 W Uppercase W

40 28 (Open parenthesis (or open
bracket)

88 58 X Uppercase X

41 29) Close parenthesis (or close
bracket)

89 59 Y Uppercase Y

42 2A * Asterisk 90 5A Z Uppercase Z

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 131

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

43 2B + Plus 91 5B [Opening bracket

44 2C , Comma 92 5C \ Backslash

45 2D - Hyphen 93 5D] Closing bracket

46 2E . Period, dot or full stop 94 5E ^ Caret - circumflex

47 2F / Slash or divide 95 5F _ Underscore

48 30 0 Zero 96 60 ` Grave accent

49 31 1 One 97 61 a Lowercase a

50 32 2 Two 98 62 b Lowercase b

51 33 3 Three 99 63 c Lowercase c

52 34 4 Four 100 64 d Lowercase d

53 35 5 Five 101 65 e Lowercase e

54 36 6 Six 102 66 f Lowercase f

55 37 7 Seven 103 67 g Lowercase g

56 38 8 Eight 104 68 h Lowercase h

57 39 9 Nine 105 69 i Lowercase i

58 3A : Colon 106 6A j Lowercase j

59 3B ; Semicolon 107 6B k Lowercase k

60 3C < Less than (or open angled
bracket)

108 6C l Lowercase l

61 3D = Equals 109 6D m Lowercase m

62 3E > Greater than (or close angled
bracket)

110 6E n Lowercase n

63 3F ? Question mark 111 6F o Lowercase o

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 132

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

64 40 @ At symbol 112 70 p Lowercase p

65 41 A Uppercase A 113 71 q Lowercase q

66 42 B Uppercase B 114 72 r Lowercase r

67 43 C Uppercase C 115 73 s Lowercase s

68 44 D Uppercase D 116 74 t Lowercase t

69 45 E Uppercase E 117 75 u Lowercase u

70 46 F Uppercase F 118 76 v Lowercase v

71 47 G Uppercase G 119 77 w Lowercase w

72 48 H Uppercase H 120 78 x Lowercase x

73 49 I Uppercase I 121 79 y Lowercase y

74 4A J Uppercase J 122 7A z Lowercase z

75 4B K Uppercase K 123 7B { Opening brace

76 4C L Uppercase L 124 7C | Vertical bar

77 4D M Uppercase M 125 7D } Closing brace

78 4E N Uppercase N 126 7E ~ Equivalency sign - tilde

79 4F O Uppercase O 127 7F (Delete) Delete

Table 10-2: Extended ASCII codes (character code 128-255)

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

128 80 € Euro sign 192 C0 À Latin capital letter A with
grave

129 81 193 C1 Á Latin capital letter A with
acute

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 133

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

130 82 ‚ Single low-9 quotation mark 194 C2 Â Latin capital letter A with
circumflex

131 83 ƒ Latin small letter f with
hook

195 C3 Ã Latin capital letter A with
tilde

132 84 „ Double low-9 quotation
mark

196 C4 Ä Latin capital letter A with
diaeresis

133 85 … Horizontal ellipsis 197 C5 Å Latin capital letter A with
ring above

134 86 † Dagger 198 C6 Æ Latin capital letter AE

135 87 ‡ Double dagger 199 C7 Ç Latin capital letter C with
cedilla

136 88 ˆ Modifier letter circumflex
accent

200 C8 È Latin capital letter E with
grave

137 89 ‰ Per mille sign 201 C9 É Latin capital letter E with
acute

138 8A Š Latin capital letter S with
caron

202 CA Ê Latin capital letter E with
circumflex

139 8B ‹ Single left-pointing angle
quotation

203 CB Ë Latin capital letter E with
diaeresis

140 8C Œ Latin capital ligature OE 204 CC Ì Latin capital letter I with
grave

141 8D 205 CD Í Latin capital letter I with
acute

142 8E Ž Latin captial letter Z with
caron

206 CE Î Latin capital letter I with
circumflex

143 8F 207 CF Ï Latin capital letter I with
diaeresis

144 90 208 D0 Ð Latin capital letter ETH

145 91 ‘ Left single quotation mark 209 D1 Ñ Latin capital letter N with
tilde

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 134

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

146 92 ’ Right single quotation mark 210 D2 Ò Latin capital letter O with
grave

147 93 “ Left double quotation mark 211 D3 Ó Latin capital letter O with
acute

148 94 ” Right double quotation mark 212 D4 Ô Latin capital letter O with
circumflex

149 95 • Bullet 213 D5 Õ Latin capital letter O with
tilde

150 96 – En dash 214 D6 Ö Latin capital letter O with
diaeresis

151 97 — Em dash 215 D7 × Multiplication sign

152 98 ˜ Small tilde 216 D8 Ø Latin capital letter O with
slash

153 99 ™ Trade mark sign 217 D9 Ù Latin capital letter U with
grave

154 9A š Latin small letter S with
caron

218 DA Ú Latin capital letter U with
acute

155 9B › Single right-pointing angle
quotation mark

219 DB Û Latin capital letter U with
circumflex

156 9C œ Latin small ligature oe 220 DC Ü Latin capital letter U with
diaeresis

157 9D 221 DD Ý Latin capital letter Y with
acute

158 9E ž Latin small letter z with
caron

222 DE Þ Latin capital letter THORN

159 9F Ÿ Latin capital letter Y with
diaeresis

223 DF ß Latin small letter sharp s -
ess-zed

160 A0 (Non-breaking
space)

Non-breaking space 224 E0 à Latin small letter a with
grave

161 A1 ¡ Inverted exclamation mark 225 E1 á Latin small letter a with
acute

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 135

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

162 A2 ¢ Cent sign 226 E2 â Latin small letter a with
circumflex

163 A3 £ Pound sign 227 E3 ã Latin small letter a with
tilde

164 A4 ¤ Currency sign 228 E4 ä Latin small letter a with
diaeresis

165 A5 ¥ Yen sign 229 E5 å Latin small letter a with
ring above

166 A6 ¦ Pipe, Broken vertical bar 230 E6 æ Latin small letter ae

167 A7 § Section sign 231 E7 ç Latin small letter c with
cedilla

168 A8 ¨ Spacing dieresis - umlaut 232 E8 è Latin small letter e with
grave

169 A9 © Copyright sign 233 E9 é Latin small letter e with
acute

170 AA ª Feminine ordinal indicator 234 EA ê Latin small letter e with
circumflex

171 AB « Left double angle quotes 235 EB ë Latin small letter e with
diaeresis

172 AC ¬ Not sign 236 EC ì Latin small letter i with
grave

173 AD (Soft hyphen) Soft hyphen 237 ED í Latin small letter i with
acute

174 AE ® Registered trade mark sign 238 EE î Latin small letter i with
circumflex

175 AF ¯ Spacing macron - overline 239 EF ï Latin small letter i with
diaeresis

176 B0 ° Degree sign 240 F0 ð Latin small letter eth

177 B1 ± Plus-or-minus sign 241 F1 ñ Latin small letter n with
tilde

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 136

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

178 B2 ² Superscript two - squared 242 F2 ò Latin small letter o with
grave

179 B3 ³ Superscript three - cubed 243 F3 ó Latin small letter o with
acute

180 B4 ´ Acute accent - spacing acute 244 F4 ô Latin small letter o with
circumflex

181 B5 µ Micro sign 245 F5 õ Latin small letter o with
tilde

182 B6 ¶ Pilcrow sign - paragraph
sign

246 F6 ö Latin small letter o with
diaeresis

183 B7 · Middle dot - Georgian
comma

247 F7 ÷ Division sign

184 B8 ¸ Spacing cedilla 248 F8 ø Latin small letter o with
slash

185 B9 ¹ Superscript one 249 F9 ù Latin small letter u with
grave

186 BA º Masculine ordinal indicator 250 FA ú Latin small letter u with
acute

187 BB » Right double angle quotes 251 FB û Latin small letter u with
circumflex

188 BC ¼ Fraction one quarter 252 FC ü Latin small letter u with
diaeresis

189 BD ½ Fraction one half 253 FD ý Latin small letter y with
acute

190 BE ¾ Fraction three quarters 254 FE þ Latin small letter thorn

191 BF ¿ Inverted question mark 255 FF ÿ Latin small letter y with
diaeresis

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 137

Table 10-3: ASCII control characters (character code 0-31)

Character ASCII
code

Character Description Character ASCII code Character Description

DEC HEX Symbol Description DEC HEX Symbol Description

0 0 NUL Null char 16 10 DLE Data Line Escape

1 1 SOH Start of Heading 17 11 DC1 Device Control 1 (oft.
XON)

2 2 STX Start of Text 18 12 DC2 Device Control 2

3 3 ETX End of Text 19 13 DC3 Device Control 3 (oft.
XOFF)

4 4 EOT End of Transmission 20 14 DC4 Device Control 4

5 5 ENQ Enquiry 21 15 NAK Negative
Acknowledgement

6 6 ACK Acknowledgment 22 16 SYN Synchronous Idle

7 7 BEL Bell 23 17 ETB End of Transmit Block

8 8 BS Back Space 24 18 CAN Cancel

9 9 HT Horizontal Tab 25 19 EM End of Medium

10 0A LF Line Feed 26 1A SUB Substitute

11 0B VT Vertical Tab 27 1B ESC Escape

12 0C FF Form Feed 28 1C FS File Separator

13 0D CR Carriage Return 29 1D GS Group Separator

14 0E SO Shift Out / X-On 30 1E RS Record Separator

15 0F SI Shift In / X-Off 31 1F US Unit Separator

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix A: ASCII Character Codes

Confidential 138

Chapter 11
Appendix B: Examples of Column Sizes Calculation for Encryption
Table 11-1: Column Sizes Calculation for 3DES encryption

Data Type Size (bytes) 3DES 3DES-CRC 3DES-IV 3DES-IV-CRC 3DES-IV-CRC-
KeyID

Maximum padding size 8 8 8 8 8

Checksum size 0 4 0 4 4

IV Size 0 0 8 8 8

SMALLINT 2 8 8 16 16 18

INTEGER 4 8 16 16 24 26

BIGINT 8 16 16 24 24 26

DATE 4 8 16 16 24 26

DECIMAL(1..2) 1 8 8 16 16 18

DECIMAL(3..4) 2 8 8 16 16 18

DECIMAL(5..9) 4 8 16 16 24 26

DECIMAL(10..18) 8 16 16 24 24 26

DECIMAL(19..38) 16 24 24 32 32 34

FLOAT, REAL 8 16 16 24 24 26

Latin

CHAR / VARCHAR

5 8 16 16 24 26

Unicode

CHAR / VARCHAR

5 16 16 24 24 26

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix B: Examples of Column Sizes Calculation for Encryption

Confidential 139

Table 11-2: Column Sizes Calculation for AES encryption (AES-256 and AES-128)

Data Type Size (bytes) AES AES-CRC AES-IV AES-IV-CRC AES-IV-CRC-
KeyID

Maximum padding size - 16 16 16 16 16

Checksum size - 0 4 0 4 4

IV Size - 0 0 16 16 16

SMALLINT 2 16 16 32 32 34

INTEGER 4 16 16 32 32 34

BIGINT 8 16 16 32 32 34

DATE 4 16 16 32 32 34

DECIMAL(1..2) 1 16 16 32 32 34

DECIMAL(3..4) 2 16 16 32 32 34

DECIMAL(5..9) 4 16 16 32 32 34

DECIMAL(10..18) 8 16 16 32 32 34

DECIMAL(19..38) 16 32 32 48 48 50

FLOAT, REAL 8 16 16 32 32 34

Latin

CHAR / VARCHAR

5 16 16 32 32 34

Unicode

CHAR / VARCHAR

5 16 16 32 32 34

The sizes of database native data types may vary, but the column sizes calculation provided in the above tables is generic.

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix B: Examples of Column Sizes Calculation for Encryption

Confidential 140

Chapter 12
Appendix C: Empty String Handling by Protectors
Empty strings can be protected by tokenization and encryption. When these protected empty strings are unprotected, the output may
differ depending on how the Protector is configured. Protegrity Protectors provide empty string handling support specifically with
UDFs for varchar data types. For other data types, empty string handling depends on how the database itself represents the empty
strings.

You can configure the expected behavior of your Protector using pepserver.cfg configuration file.

The following table explains the Protectors behavior with respect to the parameter selected in the pepserver.cfg file.

Table 12-1: Empty String handling by Data Protectors on Open Systems

empty string setting in
pepserver.cfg

Operation with empty string ‘’ Handling by different Protectors on Open Systems

MSSQL Server DB2 Oracle

NULL (default) encrypt ‘’ (by all DEs) NULL NULL NULL

encrypt ‘’ by FPE NULL NULL NULL

tokenize ‘’ NULL NULL NULL

decrypt encrypted ‘’ NULL NULL NULL

encrypt encrypt ‘’ by AES-128, AES-256,
3DES

encrypted value encrypted value NULL

encrypt ‘’ by CUSP EMPTY EMPTY NULL

encrypt ‘’ by HMAC-SHA1 NULL encrypted value NULL

encrypt ‘’ by No_ENC EMPTY EMPTY NULL

encrypt ‘’ by FPE NULL EMPTY NULL

tokenize ‘’ NULL EMPTY NULL

decrypt encrypted ‘’ EMPTY EMPTY NULL

empty encrypt ‘’ by AES-128, AES-256,
3DES

EMPTY EMPTY NULL

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 141

empty string setting in
pepserver.cfg

Operation with empty string ‘’ Handling by different Protectors on Open Systems

MSSQL Server DB2 Oracle

encrypt ‘’ by CUSP EMPTY EMPTY NULL

encrypt ‘’ by FPE EMPTY EMPTY NULL

tokenize ‘’ EMPTY EMPTY NULL

decrypt encrypted ‘’ EMPTY EMPTY NULL

Hashing '' value by HMAC-SHA1 NULL

Note:

Due to inconsistent behavior, changing the default behavior for empty strings handling (emptystring = NULL) is only recommended for DB2.

Emptystring setting affects only ‘’ value. NULL and any other values are not impacted by this setting.

Oracle handles empty string ‘’ as NULL, thus emptystring setting is not applicable in Oracle.

MSSQL Server PTY functions implementation returns NULL after decryption. Thus, with emptystring=encrypt empty string ‘’ as initial value
will be encrypted, but decrypted as NULL.

Note:

For Database and MPP Database Protectors, a column protected in a table should allow NULL. If a column does not allow NULL, then attempts
to encrypt with default emptystring = NULL setting will result in error.

With emptystring=encrypt empty string ‘’ will be encrypted by the following data elements: AES-256, AES-128, 3DES, CUSP, NoEnc,
HMAC-SHA1. For token data elements, the following error is returned: Invalid input data.

Note:

Users of AP C cannot distinguish if a NULL or an empty string is returned from a decrypt operation, that is why with setting
emptystring=NULL, NULL is returned. NULL is also returned if a user lacks permissions to decrypt the data.

Before changing the emptystring setting in pepserver.cfg, it is recommended to decrypt the necessary values using the setting in which they were
encrypted.

This may be needed because in some cases you may get "integrity failed” error, for example, on attempt to decrypt a value with
emptystring=encrypt, encrypted with emptystring=empty.

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 142

Table 12-2: Empty String handling by Application Protectors on Open Systems

Emptystring setting
in pepserver.cfg

Operation with empty string
''

Handling by different Application Protectors on Open Systems

AP C AP NodeJS AP .Net AP Java AP Python AP Golang

NULL (default) protect '' by NoEnc NULL NULL NULL NULL None EMPTY

encrypt '' by AES-256 NULL NULL NULL NULL None EMPTY

encrypt '' by FPE NULL NULL NULL NULL None EMPTY

tokenize '' by any Token
Element

NULL NULL NULL NULL None EMPTY

decrypt encrypted ''

by data element that was used
to encrypt

NULL NULL NULL NULL None EMPTY

detokenize tokenized ''

by token element that was used
to protect

NULL NULL NULL NULL None EMPTY

unprotect protected ''

by NoEnc data element that
was used to protect

NULL NULL NULL NULL None EMPTY

reprotect protected ''

by any Encryption Data
element

NULL NULL NULL NULL None EMPTY

reprotect protected ''

by any Token element

NULL NULL NULL NULL None EMPTY

reprotect protected ''

by NoEnc

NULL NULL NULL NULL None EMPTY

encrypt protect '' by NoEnc NULL NULL NULL NULL NULL NULL

encrypt ''

by AES-256

encrypted
value

encrypted
value

encrypted
value

encrypted
value

encrypted
value

encrypted
value

encrypt ''

by HMAC-SHA1, CUSP

CUSP:
ERROR
MESSAGE:
44, The

CUSP:
ERROR
MESSAGE:
44, The

CUSP:
ERROR
MESSAGE:
44, The

CUSP:
ERROR
MESSAGE:
44, The

CUSP:
ERROR
MESSAGE:
44, The

CUSP:
ERROR
MESSAGE:
44, The

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 143

Emptystring setting
in pepserver.cfg

Operation with empty string
''

Handling by different Application Protectors on Open Systems

AP C AP NodeJS AP .Net AP Java AP Python AP Golang

content of
the input
data is not
valid

HMAC-
SHA1:
hashed
value

content of
the input
data is not
valid

HMAC-
SHA1:
hashed value

content of the
input data is
not valid

HMAC-
SHA1:
hashed value

content of the
input data is
not valid

HMAC-
SHA1: hashed
value

content of the
input data is
not valid

HMAC-
SHA1: hashed
value

content of the
input data is
not valid

HMAC-SHA1:
hashed value

encrypt '' by FPE NULL NULL NULL NULL NULL EMPTY

tokenize ''

by any Token element

NULL NULL NULL NULL NULL EMPTY

detokenize tokenized ''

by token element that was used
to tokenize

NULL NULL NULL NULL NULL EMPTY

decrypt encrypted ''

by AES-256 by encryption
data element that was used to
encrypt

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

unprotect protected ''

by NoEnc data element that
was used to protect

NULL NULL NULL NULL NULL EMPTY

reprotect protected ''

by AES-256

Encrypted
value

Encrypted
value

Encrypted
value

Encrypted
value

Encrypted
value

Encrypted
value

reprotect protected ''

by NoEnc

NULL NULL NULL NULL NULL EMPTY

reprotect protected ''

by any Token element

NULL NULL NULL NULL NULL EMPTY

empty protect '' by NoEnc EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

encrypt '' AES-256 EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 144

Emptystring setting
in pepserver.cfg

Operation with empty string
''

Handling by different Application Protectors on Open Systems

AP C AP NodeJS AP .Net AP Java AP Python AP Golang

encrypt '' by FPE EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

tokenize '' by any Token
element

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

decrypt encrypted ''

by data element that was used
to encrypt

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

detokenize tokenized ''

by token element that was used
to tokenize

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

unprotect protected ''

by NoEnc data element that
was used to protect

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

reprotect protected ''

by any Enc data element

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

reprotect protected ''

by any Token element

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

reprotect protected ''

by NoEnc Token element

EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY

Table 12-3: Empty String handling by MPP Data Protectors on Open Systems

empty string
setting

in pepserver.cfg

Operation with empty
string ‘’

Handling by different Protectors on Open Systems

Teradata GPDB IBM Netezza

NULL (default) encrypt ‘’

(by all DEs)

NULL NULL NULL

encrypt ‘’ by FPE ‘?’ NULL NA

tokenize ‘’ NULL NULL NULL

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 145

empty string
setting

in pepserver.cfg

Operation with empty
string ‘’

Handling by different Protectors on Open Systems

Teradata GPDB IBM Netezza

decrypt encrypted ‘’ NULL NULL NULL

encrypt encrypt ‘’

by AES-128, AES-256,
3DES

encrypted value encrypted value encrypted value

encrypt ‘’ by CUSP encrypted value encrypted value Not supported

encrypt ‘’

by HMAC-SHA1

encrypted value encrypted value N/A

encrypt by No_ENC EMPTY EMPTY EMPTY

encrypt ‘’ by FPE EMPTY EMPTY NA

tokenize ‘’ EMPTY EMPTY EMPTY

decrypt encrypted ‘’ EMPTY EMPTY EMPTY

empty encrypt ‘’

by AES-128, AES-256,
3DES

EMPTY EMPTY EMPTY

encrypt ‘’ by CUSP,
HMAC-SHA1

EMPTY EMPTY EMPTY

encrypt ‘’ by FPE EMPTY EMPTY NA

tokenize ‘’ EMPTY EMPTY EMPTY

decrypt encrypted ‘’ EMPTY EMPTY EMPTY

Note:

Due to inconsistent behavior, changing the default behavior for empty strings handling (emptystring = NULL) is only recommended for
Teradata and DB2.

Emptystring setting affects only ‘’ value. NULL and any other values are not impacted by this setting.

For Database and MPP Database Protectors, a column protected in a table should allow NULL. If a column does not allow NULL, then attempts
to encrypt with default emptystring = NULL setting will result in error.

Note:

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 146

With emptystring=encrypt empty string ‘’ will be encrypted by the following data elements: AES-256, AES-128, 3DES, CUSP, NoEnc,and
HMAC-SHA1. For token data elements, the following error is returned: Invalid input data.

Users of XC cannot distinguish if a NULL or an empty string is returned from a decrypt operation, that is why with setting emptystring=NULL,
NULL is returned. NULL is also returned if a user lacks permissions to decrypt the data.

Note:

Before changing the emptystring setting in pepserver.cfg, it is recommended to decrypt the necessary values using the setting in which they were
encrypted.

This may be needed because in some cases you may get "integrity failed” error, for example, on attempt to decrypt a value with
emptystring=encrypt, encrypted with emptystring=empty.

Table 12-4: Empty String handling by Big Data Protectors on Open Systems

Emptystring setting
in pepserver.cfg

Operation
with empty
string ‘’

Handling by Big Data Protectors on Open Systems

MapReduce Hive Pig *1 HBase *2 Impala Spark Spark
SQL

Presto

NULL (default) protect ‘’

by NoEnc

NULL NULL N/A N/A NULL NULL NULL Not supported

encrypt ‘’

by AES-256,
AES-128,
3DES,
HMAC-SHA
1 , CUSP

NULL NULL N/A N/A NULL NULL N/A Not supported

encrypt ‘’

by FPE

NULL NULL NULL NULL NULL NULL NULL Not supported

tokenize ‘’
by any
Token
Element

NULL NULL N/A N/A NULL NULL NULL NULL

decrypt
encrypted ‘’

by data
element that
was used to
encrypt

NULL NULL N/A N/A NULL NULL NULL Not supported

detokenize
tokenized ‘’

NULL NULL N/A N/A NULL NULL NULL NULL

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 147

Emptystring setting
in pepserver.cfg

Operation
with empty
string ‘’

Handling by Big Data Protectors on Open Systems

MapReduce Hive Pig *1 HBase *2 Impala Spark Spark
SQL

Presto

by token
element that
was used to
protect

unprotect
protected ‘’

by NoEnc
data element
that was used
to protect

NULL NULL N/A N/A NULL NULL NULL Not supported

reprotect
protected ‘’

by any
Encryption
Data element

NULL NULL N/A N/A N/A NULL NULL Not supported

reprotect
protected ‘’

by any
Token
element

NULL NULL N/A N/A N/A NULL NULL NULL

reprotect
protected ‘’
by NoEnc

NULL NULL N/A N/A N/A NULL NULL Not supported

encrypt encrypt ‘’

by AES-128,
AES-256,
3DES

encrypted value encrypted
value

N/A encrypted
value

encrypted
value

encrypted
value

encrypted
value

Not supported

encrypt ‘’

by HMAC-
SHA1,
CUSP

CUSP: EMPTY

HMAC-SHA1:
hashed value

CUSP:
EMPTY

HMAC-
SHA1: Not
supported

N/A CUSP:
EMPTY

HMAC-
SHA1:
hashed
value

CUSP:
EMPTY

CUSP:
EMPTY

HMAC-
SHA1:
hashed
value

CUSP:
EMPTY

HMAC-
SHA1: Not
supported

Not supported

encrypt ‘’ by
FPE

EMPTY N/A N/A EMPTY EMPTY EMPTY N/A Not supported

protect ‘’,
NoEnc

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY Not supported

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 148

Emptystring setting
in pepserver.cfg

Operation
with empty
string ‘’

Handling by Big Data Protectors on Open Systems

MapReduce Hive Pig *1 HBase *2 Impala Spark Spark
SQL

Presto

tokenize ‘’

by any
Token
element

NULL NULL N/A NULL NULL NULL NULL Not supported

detokenize
tokenized ‘’

by token
element that
was used to
tokenize

NULL NULL N/A NULL NULL NULL NULL Not supported

decrypt
encrypted ‘’

by AES-128,
AES-256,
3DES by
encryption
data element
that was used
to encrypt

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY Not supported

unprotect
protected ‘’

by NoEnc
data element
that was used
to protect

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY Not supported

reprotect
protected ‘’

by AES-128,
AES-256,
3DES

encrypted value encrypted
value

N/A N/A N/A encrypted
value

encrypted
value

Not supported

reprotect
protected ‘’

by NoEnc

EMPTY EMPTY N/A N/A N/A EMPTY EMPTY Not supported

reprotect
protected ‘’

by any
Token
element

NULL NULL N/A N/A N/A NULL NULL Not supported

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 149

Emptystring setting
in pepserver.cfg

Operation
with empty
string ‘’

Handling by Big Data Protectors on Open Systems

MapReduce Hive Pig *1 HBase *2 Impala Spark Spark
SQL

Presto

empty protect ‘’

by NoEnc

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY Not supported

encrypt ‘’

AES-128,
AES-256,
3DES,
HMAC-
SHA1,
CUSP

EMPTY EMPTY N/A EMPTY EMPTY EMPTY N/A Not Supported

encrypt ‘’ by
FPE

EMPTY N/A N/A EMPTY EMPTY EMPTY N/A Not supported

tokenize ‘’

by any
Token
element

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY EMPTY

decrypt
encrypted ‘’

by data
element that
was used to
encrypt

EMPTY EMPTY N/A EMPTY EMPTY EMPTY N/A Not supported

detokenize
tokenized ‘’

by token
element that
was used to
tokenize

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY EMPTY

unprotect
protected ‘’

by NoEnc
data element
that was used
to protect

EMPTY EMPTY N/A EMPTY EMPTY EMPTY EMPTY Not supported

reprotect
protected ‘’

EMPTY EMPTY N/A N/A N/A EMPTY N/A Not supported

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 150

Emptystring setting
in pepserver.cfg

Operation
with empty
string ‘’

Handling by Big Data Protectors on Open Systems

MapReduce Hive Pig *1 HBase *2 Impala Spark Spark
SQL

Presto

by any Enc
data element

reprotect
protected ‘’

by any
Token
element

EMPTY EMPTY N/A N/A N/A EMPTY EMPTY EMPTY

reprotect
protected ‘’

by NoEnc
Token
element

EMPTY EMPTY N/A N/A N/A EMPTY EMPTY Not supported

Note:
*1 – If empty strings need to be loaded, then the Pig functions replace the empty strings with null value.

*2– Since HBase does not support Null values, it does not support the empty string setting as Null.

The following table explains the expected behavior of the Protectors on z/OS.

Table 12-5: Empty String handling by Protectors on z/OS

Emptystring setting in
pepserver.cfg

Operation with empty
string ‘’

Handling by different Protectors on z/OS

DB2

UDFs

EDITPROC FIELDPRO
C

AP C File Utility

NULL (default) encrypt ‘’ (all DEs) NULL N/A NULL NULL Not supported

tokenize ‘’ NULL N/A NULL NULL Not supported

decrypt encrypted ‘’ NULL N/A NULL NULL Not supported

encrypt encrypt ‘’ (all DEs) encrypted value N/A N/A encrypted value error message

tokenize ‘’ error message N/A N/A error message error message

decrypt encrypted ‘’ EMPTY N/A N/A NULL error message

empty encrypt ‘’ (all DEs) EMPTY N/A N/A NULL error message

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 151

Emptystring setting in
pepserver.cfg

Operation with empty
string ‘’

Handling by different Protectors on z/OS

DB2

UDFs

EDITPROC FIELDPRO
C

AP C File Utility

tokenize ‘’ EMPTY N/A N/A NULL error message

decrypt encrypted ‘’ EMPTY N/A N/A NULL error message

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix C: Empty String Handling by Protectors

Confidential 152

Chapter 13
Appendix D: NULL Handling by Protectors
NULL is neither an empty string nor a zero value. When a variable has no value it is considered to be NULL. When you provide a
NULL input, it results in different return values depending on the Protectors. Hence you cannot configure the expected behavior of the
Protectors using pepserver.cfg configuration file.

The following table explains the behavior of the Protectors when NULL is the input.

Table 13-1: NULL handling by different protectors

Operation with
NULL

NULL Handling by different Protectors

Handling by Database Protectors on Open Systems

MSSQL Server DB2 Oracle

tokenize NULL
by any token
element

NULL ‘-’ NULL

detokenize
NULL by any
token element

NULL ‘-’ NULL

encrypt NULL
by any
encryption data
element

NULL ‘-’ NULL

decrypt
encrypted
NULL

NULL ‘-’ NULL

encrypt NULL
by FPE

NULL ‘-’ NULL

Handling by Application Protectors on Open Systems

AP C AP NodeJS AP .Net AP Java AP Python

tokenize NULL
by any token
element

NULL NULL NULL NULL None

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix D: NULL Handling by Protectors

Confidential 153

Operation with
NULL

NULL Handling by different Protectors

detokenize
NULL by any
token element

NULL NULL NULL NULL None

encrypt NULL
by any
encryption data
element

NULL NULL NULL NULL None

encrypt NULL
by FPE

NULL NULL NULL NULL None

decrypt
encrypted
NULL

NULL NULL NULL NULL None

Handling by MPP Database Protectors on Open Systems

Teradata GPDB IBM Netezza

tokenize NULL
by any token
element

‘?’ EMPTY EMPTY

detokenize
NULL by any
token element

‘?’ EMPTY EMPTY

encrypt NULL
by any
encryption data
element

‘?’ EMPTY EMPTY

encrypt NULL
by FPE

‘?’ NULL NA

decrypt
encrypted
NULL

‘?’ EMPTY EMPTY

Handling by Big Data Protectors on Open Systems

MapReduce Hive Pig HBase Impala Spark Spark SQL
*1

Presto

tokenize NULL
by any token
element

NULL NULL EMPTY N/A NULL NULL NULL NULL

detokenize
NULL using

NULL NULL EMPTY N/A NULL NULL NULL NULL

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix D: NULL Handling by Protectors

Confidential 154

Operation with
NULL

NULL Handling by different Protectors

data element that
was used to
tokenize

encrypt NULL
by any
encryption data
element

NULL NULL N/A N/A NULL NULL NULL Not supported

encrypt NULL
by FPE data
element

NULL N/A N/A N/A NULL NULL N/A Not supported

decrypt
encrypted
NULL using
data element that
was used to
encrypt

NULL NULL N/A N/A NULL NULL NULL Not supported

reprotect NULL
using any token
element

NULL NULL N/A N/A N/A NULL NULL NULL

reprotect NULL
using any
encryption data
element

NULL NULL N/A N/A N/A NULL NULL NULL

Note:
*1 – Null handling is supported by the Spark SQL protector with the String and Unicode UDFs only.

Note:

Null handling is not supported by the AP Go.

z/OS Protectors do not support Null handling due to the following reasons:

• UDFs do not support NULL handling.

• As EDITPROC handles rows and a NULL row holds no value, NULL handling is not applicable.

• FIELDPROC is never invoked for a NULL value.

• File Utility and z/OS APIs do not support NULL handling.

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix D: NULL Handling by Protectors

Confidential 155

Chapter 14
Appendix E: Hashing Functions and Examples

14.1 Hash Data column size

14.2 Using Hashing Triggers and View

Hashing is accomplished by two functions at the Policy Enforcement Point (PEP), an Insert hash function and an Update hash
function. Both functions take the same parameters and return a hash value that is always a 160 bit binary value. The difference
between the functions is the access rights that they check.

Here is the functions syntax example, applicable to an Oracle database:

FUNCTION ins_hash_varchar2(dataelement IN CHAR, cdata IN VARCHAR, SCID IN BINARY_INTEGER) RETURN
RAW;
FUNCTION upd_hash_varchar2(dataelement IN CHAR, cdata IN VARCHAR, SCID IN BINARY_INTEGER) RETURN
RAW;

Table 14-1: Functions Syntax Example

Where... Is...

dataelement The data element name.

cdata The data.

SCID The security ID.

There is no decrypt function since a hash is a checksum and not data.

14.1 Hash Data column size
A hash value is always 160 bits or 20 bytes long regardless of what data it’s calculated on. Basically you should have a table with
a binary column of 20 bytes for the hash value.

Here is an example of an Oracle table with hash value instead of name:

CREATE TABLE NAMETABLE (ident NUMBER PRIMARY KEY,
 name RAW(20));

14.2 Using Hashing Triggers and View
You use protection functions in triggers in the same manner as encryption.

Oracle example:

CREATE OR REPLACE TRIGGER SCOTT.NAMETABLE_INS
INSTEAD OF INSERT ON SCOTT.NAMETABLE

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix E: Hashing Functions and Examples

Confidential 156

FOR EACH ROW
DECLARE
NAME_ RAW(2000) := NULL;

BEGIN
 NAME_:=PTY.INS_HASH_VARCHAR2('HashDE', :new.NAME, 0);

 INSERT INTO SCOTT.NAMETABLE_ENC(IDENT, NAME)
 VALUES(:new.IDENT, NAME_);
END;

CREATE OR REPLACE TRIGGER SCOTT.NAMETABLE_UPD
INSTEAD OF UPDATE ON SCOTT.NAMETABLE
FOR EACH ROW
DECLARE
NAME_ RAW(2000) := NULL;

BEGIN
 PTY.SEL_CHECK('HashDE');

 NAME_:=PTY.UPD_HASH_VARCHAR2('HashDE', :new.NAME, 0);

 IF: old.IDENT = :new.IDENT THEN
 UPDATE NAMETABLE_ENC SET
 NAME= NAME_,
 WHERE IDENT=:old.IDENT;
 ELSE
 UPDATE NAMETABLE_ENC SET
 IDENT=:new.IDENT,
 NAME= NAME_,
 WHERE IDENT=:old.IDENT;
 END IF;
END;

The view selects the hash value directly from the table instead of running a decrypt function. To make this work as a normal
trigger/view solution, the binary data type is cast into the original data type. In Oracle it should be VARCHAR2. The data type
must be cast to insert data through the view as usual.

CREATE OR REPLACE VIEW SCOTT.NAMETABLE(IDENT,
NAME)
AS SELECT IDENT, utl_raw.cast_to_varchar2(NAME))
FROM SCOTT.NAMETABLE_ENC;

The application handles the return value, which will now be a 20 byte binary string converted into a character string.

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix E: Hashing Functions and Examples

Confidential 157

Chapter 15
Appendix F: Codebook Re-shuffling in the Data Security Gateway
(DSG)
You can enable the Codebook Re-shuffling in the Data Security Gateway (DSG) for all the tokenization data elements to generate
unique tokens for protected values across the tokenization domains. A tokenization domain or a token domain can be defined as a
business unit, or a geographical location, or a subsidiary organization where protected data is stored. The data protected by enabling
Codebook Re-shuffling cannot be unprotected outside the tokenization domain.

For more information about the Codebook Re-shuffling for the Data Security Gateway (DSG), refer to section Codebook Re-shuffling
in the Protegrity Cloud Gateway User Guide 2.5.0.0.

Note:

As the Codebook Re-shuffling feature is an advanced functionality, you must contact the Professional Services team for more information about
the usage.

Protegrity Protection Method Reference Guide 9.2.0.0 Appendix F: Codebook Re-shuffling in the Data Security Gateway (DSG)

Confidential 158

Index

E

Encryption
properties

Initialization Vector 104
Integrity Check 104
Key ID 104, 105, 107–113, 128
Padding 105

Encryption Algorithms
3DES 100–103, 105, 107, 108, 112, 113, 139
AES-128 100–103, 105, 109, 110, 112, 113
AES-256 101–103, 105, 110–113
CUSP 101–103, 112, 113
DTP2 143, 144

H

Hashing
HMAC-SHA1 128–130

I

Integer 29

P

Protection Method 115–117, 119–121, 123–125, 127, 129, 130

T

Tokenization
properties

External IV 36, 37, 43, 47, 51, 54, 57, 60, 63, 66, 69, 73, 76,
79, 82, 86, 88
Format 43, 47, 50, 53, 56, 59, 62, 65, 68, 73, 75, 79, 82, 86, 88
Left setting 43, 47, 49, 50, 52–66, 69, 73, 76, 79, 82, 86, 88,
93, 127, 134–136
Right setting 43, 47, 49, 50, 52–66, 69, 73, 76, 79, 82, 86, 88,
127, 135, 137
Token Type 27–29

Tokenization Types
Alpha 27, 28, 47, 49, 50, 52, 53, 55, 56, 58, 59, 77, 78
Binary 29, 86, 87, 91, 100, 101, 107, 109, 111, 113, 128
Credit Card 27, 43
Date 29, 65, 67, 68, 70, 71
Datetime 29, 68, 71, 72
Decimal 29, 73, 75
Lower ASCII 28, 59, 61, 64
Numeric 27, 28, 49, 52, 53, 55, 56, 58, 59, 74, 77, 78, 88
Printable 28, 62, 64
Unicode 29, 75, 78, 81, 84, 139, 140
Unicode Base64 78, 79
Unicode Gen2 81

Protegrity Protection Method Reference Guide 9.2.0.0 Index

Confidential 159

	Table of Contents
	Copyright
	1 Introduction to This Guide
	1.1 Sections contained in this Guide
	1.2 Accessing the Protegrity documentation suite
	1.2.1 Viewing product documentation
	1.2.2 Downloading product documentation

	2 Protegrity Protection Methods Overview
	3 Protegrity Tokenization
	3.1 Delimiters
	3.2 Support by Protegrity Products
	3.3 Tokenization Properties
	3.3.1 Token Type and Format
	3.3.2 Static Lookup Table (SLT) Tokenizers
	3.3.3 Left and Right Settings
	3.3.4 Internal Initialization Vector (IV)
	3.3.5 Minimum and Maximum Input Length
	3.3.5.1 Calculating Token Length (Zero-Length Tokens)

	3.3.6 Length Preserving
	3.3.7 Short Data Tokenization
	3.3.8 Case-Preserving and Position-Preserving Tokenization
	3.3.8.1 Case-Preserving Tokenization
	3.3.8.2 Position-Preserving Tokenization

	3.3.9 External Initialization Vector (IV)
	3.3.9.1 Tokenization model with External IV
	3.3.9.2 External IV Tokenization Properties

	3.3.10 Truncating White Spaces

	3.4 Tokenization Types
	3.4.1 Numeric (0-9)
	3.4.2 Integer (0-9)
	3.4.3 Credit Card
	3.4.3.1 Invalid Luhn Checksum
	3.4.3.2 Invalid Card Type
	3.4.3.3 Alphabetic Indicator
	3.4.3.4 Credit Card Properties with SLT Tokenizers

	3.4.4 Alpha (A-Z)
	3.4.5 Upper-case Alpha (A-Z)
	3.4.6 Alpha-Numeric (0-9, a-z, A-Z)
	3.4.7 Upper Alpha-Numeric (0-9, A-Z)
	3.4.8 Lower ASCII
	3.4.9 Printable
	3.4.10 Date (YYYY-MM-DD, DD/MM/YYYY, MM.DD.YYYY)
	3.4.11 Datetime (YYYY-MM-DD HH:MM:SS)
	3.4.12 Decimal
	3.4.13 Unicode
	3.4.14 Unicode Base64
	3.4.15 Unicode Gen2
	3.4.15.1 Code Point Range in Unicode Gen2 Token Type

	3.4.16 Binary
	3.4.17 Email
	3.4.17.1 Email Token Format

	4 Protegrity Format Preserving Encryption
	4.1 FPE Properties
	4.2 Code Points
	4.3 Tweak Input
	4.4 Left and Right Settings
	4.5 Handling Special Numeric Data
	4.6 Encryption Algorithm

	5 Protegrity Encryption
	5.1 Encryption Properties (IV, CRC, Key ID)
	5.1.1 Key IDs

	5.2 Data Length and Padding in Encryption
	5.2.1 Ciphertext Format

	5.3 Encryption Algorithms
	5.3.1 3DES
	5.3.2 AES-128 and AES-256
	5.3.2.1 AES-128
	5.3.2.2 AES-256

	5.3.3 CUSP

	6 No Encryption
	7 Monitor
	8 Masking
	8.1 Masks

	9 Hashing
	10 Appendix A: ASCII Character Codes
	11 Appendix B: Examples of Column Sizes Calculation for Encryption
	12 Appendix C: Empty String Handling by Protectors
	13 Appendix D: NULL Handling by Protectors
	14 Appendix E: Hashing Functions and Examples
	14.1 Hash Data column size
	14.2 Using Hashing Triggers and View

	15 Appendix F: Codebook Re-shuffling in the Data Security Gateway (DSG)
	Index

