
Protegrity z/OS Protector Guide 7.0.1

Created on: Aug 8, 2024

Notice
Copyright
Copyright © 2004-2024 Protegrity Corporation. All rights reserved.

Protegrity products are protected by and subject to patent protections;

Patent: https://www.protegrity.com/patents.

Protegrity logo is the trademark of Protegrity Corporation.

NOTICE TO ALL PERSONS RECEIVING THIS DOCUMENT

Some of the product names mentioned herein are used for identification purposes only and may be trademarks and/or registered
trademarks of their respective owners.

Windows, Azure, MS-SQL Server, Internet Explorer and Internet Explorer logo, Active Directory, and Hyper-V are registered
trademarks of Microsoft Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SCO and SCO UnixWare are registered trademarks of The SCO Group.

Sun, Oracle, Java, and Solaris are the registered trademarks of Oracle Corporation and/or its affiliates in the United States and other
countries.

Teradata and the Teradata logo are the trademarks or registered trademarks of Teradata Corporation or its affiliates in the United States
and other countries.

Hadoop or Apache Hadoop, Hadoop elephant logo, Hive, Presto, and Pig are trademarks of Apache Software Foundation.

Cloudera and the Cloudera logo are trademarks of Cloudera and its suppliers or licensors.

Hortonworks and the Hortonworks logo are the trademarks of Hortonworks, Inc. in the United States and other countries.

Greenplum Database is the registered trademark of VMware Corporation in the U.S. and other countries.

Pivotal HD is the registered trademark of Pivotal, Inc. in the U.S. and other countries.

PostgreSQL or Postgres is the copyright of The PostgreSQL Global Development Group and The Regents of the University of
California.

AIX, DB2, IBM and the IBM logo, and z/OS are registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide.

Protegrity z/OS Protector Guide 7.0.1 Copyright

Confidential 2

https://www.protegrity.com/patents

Utimaco Safeware AG is a member of the Sophos Group.

Xen, XenServer, and Xen Source are trademarks or registered trademarks of Citrix Systems, Inc. and/or one or more of its
subsidiaries, and may be registered in the United States Patent and Trademark Office and in other countries.

VMware, the VMware “boxes” logo and design, Virtual SMP and VMotion are registered trademarks or trademarks of VMware, Inc.
in the United States and/or other jurisdictions.

Amazon Web Services (AWS) and AWS Marks are the registered trademarks of Amazon.com, Inc. in the United States and other
countries.

HP is a registered trademark of the Hewlett-Packard Company.

HPE Ezmeral Data Fabric is the trademark or registered trademark of Hewlett Packard Enterprise in the United States and other
countries.

Dell is a registered trademark of Dell Inc.

Novell is a registered trademark of Novell, Inc. in the United States and other countries.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Mozilla and Firefox are registered trademarks of Mozilla foundation.

Chrome and Google Cloud Platform (GCP) are registered trademarks of Google Inc.

Protegrity z/OS Protector Guide 7.0.1 Copyright

Confidential 3

Table of Contents

Copyright..2

Chapter 1 Introduction To This Guide.. 9
1.1 Sections contained in this Guide...9
1.2 Accessing the Protegrity documentation suite..10

1.2.1 Viewing product documentation...10
1.2.2 Downloading product documentation.. 11

Chapter 2 Overview of the Protegrity z/OS Protectors..12
2.1 Architecture.. 12
2.2 Components of the z/OS Protector... 13

2.2.1 Protection Enforcement Point (PEP) Server...13
2.2.2 Cryptographic Services Module... 13
2.2.3 DB2 Database Protectors..13
2.2.4 Application Protectors.. 14
2.2.5 File Protectors...14
2.2.6 IMS Protectors..14

2.3 Features of z/OS Protector..15
2.4 Limitations..15
2.5 Supported Database Matrix.. 15

Chapter 3 Prerequisites for Installing the z/OS Product... 17
3.1 PEP Server on Open MVS (Unix System Services)...17

3.1.1 Environment Requirements.. 17
3.1.2 Setup Requirements..18

3.2 Cryptographic Servers on z/OS MVS...18
3.2.1 Setup Overview.. 19

3.2.1.1 Servers.. 19
3.2.1.2 Distribution Files..19
3.2.1.3 Modules..19
3.2.1.4 Cryptographic Hardware.. 20

Chapter 4 Installing the z/OS Product...21
4.1 Installing the PEP Server.. 23

4.1.1 Configuring case sensitivity in PEP Server for Policy users.. 24
4.2 Installing the Cryptographic Server..25

4.2.1 Sample Jobs to Verify the Installation.. 26
4.2.1.1 Starting PEP Server.. 26
4.2.1.2 Stopping PEP Server.. 27
4.2.1.3 Starting Cryptographic Services Task.. 28

4.3 Activating Protegrity Data Security Platform...28
4.4 Deploying a Test Policy..29
4.5 Verifying the Installation.. 30

4.5.1 PTYCSRV Return Messages.. 31
4.6 Upgrading the z/OS Protector...32

Chapter 5 Application Protector on Mainframe z/OS... 33
5.1 Installing and Customizing the Application Protector on z/OS..33

5.1.1 Installing the Cryptographic Service Interfaces on Mainframe z/OS.. 33
5.1.2 Verifying Installation.. 34

5.2 Stateless Interfaces (APIs): PTYPSLI, PTYPSLL, and PTYPSLC... 35
5.2.1 COBOL Parameters to call Stateless Interfaces... 35

Protegrity z/OS Protector Guide 7.0.1 Table of Contents

Confidential 4

5.2.2 Summary of all Parameters for PTYPSLI, PTYPSLL, and PTYPSLC... 36
5.2.2.1 Functions performed by Stateless Interfaces..37

5.2.3 Return and Reason Codes...42
5.3 Stateful Interfaces: PTYPCXI and PTYPCXL...43

5.3.1 COBOL Prameters to call Stateful Interfaces.. 43
5.3.2 Summary of all Parameters for PTYPCXI and PTYCXL..44

5.3.2.1 Functions performed by Stateful Interfaces... 45
5.3.3 Return and Reason Codes...50

Chapter 6 File Protector Solutions on Mainframe z/OS.. 52
6.1 Installing and Customizing File Protector on z/OS.. 52

6.1.1 Setting up File Protector on Mainframe z/OS.. 52
6.1.2 Installing and Customizing SIAM Subsystem... 53

6.1.2.1 Installing Dynamic CSS... 53
6.1.2.2 Installing Permanent CSS...54
6.1.2.3 Controlling Access to CSS...54

6.2 Cryptographic File Utility for z/OS..55
6.2.1 Executing Protegrity Cryptographic File Utility.. 55

6.2.1.1 Parameter File...55
6.2.1.2 Input File Specifications...57
6.2.1.3 Output File Specifications.. 57

6.3 Cryptographic Subsystem for z/OS.. 58
6.3.1 CSS Subsystem Usage..58

6.4 CSS and CFU Comparative Properties...60

Chapter 7 Database Solutions on Mainframe z/OS..61
7.1 Installing and Configuring..62

7.1.1 Setting up Database Protector on Mainframe z/OS..62
7.1.1.1 DB2 Protector Installation..62
7.1.1.2 Protector Installation Verification.. 63

7.2 FIELDPROC Usage..64
7.2.1 DB2 Passes Control to Field Procedure... 65
7.2.2 FIELDPROC Restrictions and Limitations.. 65
7.2.3 Unprotect Only FIELDPROC.. 66

7.3 EDITPROC Usage..66
7.3.1 DB2 Passes Control to an Edit Procedure.. 67
7.3.2 EDITPROC Restrictions and Limitations.. 67
7.3.3 EDITPROC with Compression and Decompression support...67

7.4 Installing Protegrity User Defined Functions... 67
7.4.1 Pre-Installation Configuration.. 68
7.4.2 Installing UDFs.. 69
7.4.3 General UDFs...69

7.4.3.1 pty.whoami... 69
7.4.3.2 pty.getversion... 69
7.4.3.3 pty.getcurrentkeyid... 70
7.4.3.4 pty.getkeyid.. 70

7.4.4 Access Check UDFs... 71
7.4.4.1 pty.have_sel_perm.. 71
7.4.4.2 pty.have_upd_perm.. 71
7.4.4.3 pty.have_ins_perm..72
7.4.4.4 pty.have_del_perm..72
7.4.4.5 pty.del_check..73

7.4.5 VARCHAR UDFs...73
7.4.5.1 pty.ins_enc_varchar..73
7.4.5.2 pty.upd_enc_varchar...74
7.4.5.3 pty.sel_dec_varchar.. 75
7.4.5.4 pty.ins_varchar... 75

Protegrity z/OS Protector Guide 7.0.1 Table of Contents

Confidential 5

7.4.5.5 pty.upd_varchar.. 76
7.4.5.6 pty.sel_varchar..76
7.4.5.7 pty.ins_hash_varchar.. 77
7.4.5.8 pty.upd_hash_varchar...78

7.4.6 VARCHAR FOR BIT DATA UDFs... 78
7.4.6.1 pty.ins_enc_varcharfbd...78
7.4.6.2 pty.upd_enc_varcharfbd... 79
7.4.6.3 pty.sel_dec_varcharfbd...80
7.4.6.4 pty.ins_varcharfbd.. 80
7.4.6.5 pty.upd_varcharfbd...81
7.4.6.6 pty.sel_varcharfbd.. 82

7.4.7 CHAR UDFs.. 82
7.4.7.1 pty.ins_enc_char...82
7.4.7.2 pty.upd_enc_char..83
7.4.7.3 pty.sel_dec_char... 84

7.4.8 CHAR FOR BIT DATA UDFs... 84
7.4.8.1 pty.ins_enc_charfbd..84
7.4.8.2 pty.upd_enc_charfbd.. 85
7.4.8.3 pty.sel_dec_charfbd..86

7.4.9 DATE UDFs... 86
7.4.9.1 pty.ins_enc_date... 86
7.4.9.2 pty.upd_enc_date..87
7.4.9.3 pty.sel_dec_date... 88
7.4.9.4 pty.ins_date...88
7.4.9.5 pty.upd_date... 89
7.4.9.6 pty.sel_date...89

7.4.10 TIMESTAMP UDFs...90
7.4.10.1 pty.ins_enc_timestamp... 90
7.4.10.2 pty.upd_enc_timestamp..91
7.4.10.3 pty.sel_dec_timestamp... 91

7.4.11 TIME UDFs..92
7.4.11.1 pty.ins_enc_time...92
7.4.11.2 pty.upd_enc_time... 93
7.4.11.3 pty.sel_dec_time...93
7.4.11.4 pty.ins_time.. 94
7.4.11.5 pty.upd_time...95
7.4.11.6 pty.sel_time.. 95

7.4.12 INTEGER UDFs.. 96
7.4.12.1 pty.ins_enc_integer...96
7.4.12.2 pty.upd_enc_integer... 96
7.4.12.3 pty.sel_dec_integer... 97
7.4.12.4 pty.ins_integer.. 98
7.4.12.5 pty.upd_integer... 98
7.4.12.6 pty.sel_integer...99

7.4.13 SMALLINT UDFs... 99
7.4.13.1 pty.ins_enc_smallint...100
7.4.13.2 pty.upd_enc_smallint..100
7.4.13.3 pty.sel_dec_smallint... 101
7.4.13.4 pty.ins_smallint.. 101
7.4.13.5 pty.upd_smallint... 102
7.4.13.6 pty.sel_smallint...103

7.4.14 REAL UDFs... 103
7.4.14.1 pty.ins_enc_real..103
7.4.14.2 pty.upd_enc_real...104
7.4.14.3 pty.sel_dec_real.. 105
7.4.14.4 pty.ins_real... 105
7.4.14.5 pty.upd_real.. 106
7.4.14.6 pty.sel_real..106

Protegrity z/OS Protector Guide 7.0.1 Table of Contents

Confidential 6

7.4.15 DOUBLE UDFs... 107
7.4.15.1 pty.ins_enc_double...107
7.4.15.2 pty.upd_enc_double..108
7.4.15.3 pty.sel_dec_double... 108
7.4.15.4 pty.ins_double.. 109
7.4.15.5 pty.upd_double... 110
7.4.15.6 pty.sel_double...110

Chapter 8 The IMS Solutions on Mainframe z/OS.. 112
8.1 Installing and Configuring the IMS Protector on Mainframe z/OS..112

8.1.1 Setting Up the IMS Protector... 112
8.1.2 Verifying the IMS Protector Installation.. 113

8.2 Segment Edit/Compression Exit Routine... 113
8.2.1 Specifying the Segment Edit/Compression Exit Routine...114
8.2.2 IMS Protector Restrictions and Limitations... 114
8.2.3 Usage of Compression and Decompression Facility..115
8.2.4 Return and Reason Codes...115

8.3 PTYPSLL/PTYPSLI to protect/unprotect IMS data.. 117

Appendix 9 Uploading Certificates from ESA to z/OS Manually... 118

Appendix 10 Sample Codes for Automated Installation.. 119
10.1 Sample JCL to Execute the Script to Update the pepserver.cfg file... 119
10.2 Sample Code to use the BPXBATCH to Install the PEP Server...120
10.3 Details on the JMVS jcl to Install the Cryptographic Server... 120

Appendix 11 Sample Code for the PTYPARM Configuration file... 122

Appendix 12 Sample RACF Setup for the Started tasks..125

Appendix 13 z/OS Application Protector Samples... 127
13.1 Test Data... 127
13.2 Copybooks.. 127
13.3 Compilation of programs..128
13.4 Interfaces...129
13.5 Detailed Descriptions of COBOL programs and JCLs...130

13.5.1 ENCDEC.. 130
13.5.2 ENCDECL1..130
13.5.3 ENCDECX1... 130
13.5.4 PTYPAP1 and PTYPAP2... 131
13.5.5 PTYPAX1 and PTYPAX2..131
13.5.6 PTYPSL1 and PTYPSL2... 131
13.5.7 PTYQCKID..132
13.5.8 PTYQDDES... 132
13.5.9 PTYQDDEX...132
13.5.10 PTYQDKID..132
13.5.11 PTYVSAM... 132
13.5.12 PTYVSAM1... 133
13.5.13 PTYVSAM2... 133
13.5.14 PTYVSAM3 and PTYVSAM4.. 133
13.5.15 PTYIMS1 and PTYIMS2... 133
13.5.16 PTYIMS3 and PTYIMS4... 134
13.5.17 PTYSLLDB..134
13.5.18 PTYPSC1... 134

Protegrity z/OS Protector Guide 7.0.1 Table of Contents

Confidential 7

13.5.19 PTYPSEIV... 135
13.5.20 PTYPCEIV... 135

Appendix 14 z/OS Database Protector Samples..136

Appendix 15 z/OS File Protector Samples...138
15.1 Test data.. 138
15.2 Sample Programs.. 138

Appendix 16 z/OS IMS Protector Samples..140
16.1 Sample Code to Create DBD..140
16.2 Sample Code to Create PSB... 141

16.2.1 Creating PSB with the LOAD Operation... 141
16.2.2 Creating PSB with the SELECT Operation..141

16.3 JCL Sample to create Segment edit/compression exit routine... 141
16.4 JCL Sample to run programs to LOAD/SELECT the IMS database... 141

16.4.1 JCL Sample to run a program to LOAD the IMS database..142
16.4.2 JCL Sample to run a program to SELECT the IMS database.. 142

Appendix 17 Security Considerations..144

Protegrity z/OS Protector Guide 7.0.1 Table of Contents

Confidential 8

Chapter 1
Introduction To This Guide

1.1 Sections contained in this Guide

1.2 Accessing the Protegrity documentation suite

This guide provides information about installing, configuring, and using the Protegrity z/OS Protectors.

1.1 Sections contained in this Guide
The guide is broadly divided into the following sections.

• Section 1 Introduction to this Guide defines the purpose and scope for this guide. In addition, it explains how information is
organized in this guide.

• Section 2 Overview of the Protegrity z/OS Protectors provides an overview of the Protegrity z/OS Protectors including the
general architecture. In addition, it explains the components, features, and Limitations of the z/OS Protector.

• Section 3 Prerequisites for z/OS Product Installation contains the prerequisites for the installation of the z/OS Protectors.

• Section 4 Installing the z/OS Product demonstrates the installation instructions for the z/OS Protectors. In addition, this
section describes how to upgrade the z/OS Protector.

• Section 5 Application Protector on Mainframe z/OS describes the Application Protector variants on z/OS, including
installation and configuration for both stateful and stateless protocols.

• Section 6 File Protector Solutions on Mainframe z/OS describes the deployment and management of permissions related to
File Protector on z/OS platform.

• Section 7 Database Solutions on Mainframe z/OS discusses about the Database Solutions on z/OS Protectors. In addition, it
describes how to install and configure the Mainframe z/OS Protector. A list of all the UDFs with the syntax are provided.

• Section 8 IMS Solutions on Mainframe z/OS describes about IMS Protector for z/OS including the installation and
configuration. In addition, this section describes about the IMS segment edit/compression exit routines including restrictions
and limitations, usage of compression and decompression, return and reason codes, and sample programs.

• Section 9 Appendix A: Uploading Certificates from ESA to z/OS Manually demonstrates how to upload certificates from
ESA to z/OS manually.

• Section 10 Appendix B: Sample Codes for Automated Installation contains sample codes for Automated Installation.

• Section 11 Appendix C: Sample Code for PTYPARM Configuration file demonstrates the usage of the PTYPARM
configuration file that is used for customization of Cryptographic Servers on the Mainframe z/OS platform.

• Section 12 Appendix D: Sample RACF Setup for the Started tasks contains sample code to setup for the RACF permissions in
the Protegrity and PEP server started tasks.

• Section 13 Appendix E: z/OS Application Protector Samples contains samples of Application Protector for Mainframe.

• Section 14 Appendix F: Sample Code for the z/OS Database Protector Mainframe contains samples of Database Protector for
Mainframe.

• Section 15 Appendix G: Sample Code for File Protector Mainframe contains sample code to perform various tasks with File
Protector for Mainframe.

Protegrity z/OS Protector Guide 7.0.1 Introduction To This Guide

Confidential 9

• Section 16 Appendix H: Sample Code for IMS Protector Mainframe contains sample codes for performing various tasks with
IMS Protector for Mainframe.

• Section 17 Appendix I: Security Considerations contains suggestions about how to use the external security manager of z/OS
to provide additional security for the Protegrity z/OS protector software.

1.2 Accessing the Protegrity documentation suite
This section describes the methods to access the Protegrity Documentation Suite using the My.Protegrity portal.

1.2.1 Viewing product documentation

The Product Documentation section under Resources is a repository for Protegrity product documentation. The documentation
for the latest product release is displayed first. The documentation is available in the HTML format and can be viewed using your
browser. You can also view and download the .pdf files of the required product documentation.

1. Log in to the My.Protegrity portal.

2. Click Resources > Product Documentation.

3. Click a product version.
The documentation appears.

Figure 1-1: Documentation

4. Expand and click the link for the required documentation.

5. If required, then enter text in the Search field to search for keywords in the documentation.

The search is dynamic, and filters results while you type the text.

6. Click the Print PDF icon from the upper-right corner of the page.

Protegrity z/OS Protector Guide 7.0.1 Introduction To This Guide

Confidential 10

https://my.protegrity.com
https://my.protegrity.com

The page with links for viewing and downloading the guides appears. You can view and print the guides that you require.

1.2.2 Downloading product documentation

This section explains the procedure to download the product documentation from the My.Protegrity portal.

1. Click Product Management > Explore Products.

2. Select Product Documentation.
The Explore Products page is displayed. You can view the product documentation of various Protegrity products as per their
releases, containing an overview and other guidelines to use these products at ease.

3. Click View Products to advance to the product listing screen.

4. Click the View icon () from the Action column for the row marked On-Prem in the Target Platform Details column.

If you want to filter the list, then use the filters for: OS, Target Platform, and Search fields.

5. Click the icon for the action that you want to perform.

Protegrity z/OS Protector Guide 7.0.1 Introduction To This Guide

Confidential 11

https://my.protegrity.com

Chapter 2
Overview of the Protegrity z/OS Protectors

2.1 Architecture

2.2 Components of the z/OS Protector

2.3 Features of z/OS Protector

2.4 Limitations

2.5 Supported Database Matrix

This section provides an overview of the Protegrity z/OS Protectors that includes the general architecture, components, features, and
limitations of the z/OS Protector.

The Protegrity Data Security Platform is comprised of the following components:

• Enterprise Security Administrator (ESA) – The ESA serves as a single point of management for creating and deploying data
security policies, rules configuration, and monitoring of the system on an on-going basis.

• Data Protectors - The Data Protectors include the Application Protector, Database Protector, File Protector, and IMS Protector.
The protectors are used to protect sensitive data in the enterprise and deploy security policy for enforcement on each installed
system.

The ESA working in combination with a data protector can be used to encrypt or tokenize sensitive data. The PEP server provides a
platform server that interfaces between the Protegrity protectors and the ESA.

The Protegrity z/OS Cryptographic Services Module (CSM) is a highly secured component that provides data protection and
unprotection to the following data protectors: Application Protector, File Protector, Database Protector, and IMS Protector. The
Protegrity z/OS protectors can protect DB2 and IMS databases, VSAM data, and flat file data. The Cryptographic Services Manager is
not required for User Defined Functions (UDFs).

2.1 Architecture
The Protegrity z/OS Protector architecture is explained in this section.

The PEP server runs under Open MVS (OMVS) and communicates with the ESA via encrypted TCP/IP communications. It puts
the data protection policy into UNIX Interprocess Communications (IPC) shared memory segments. These segments are shared
with the Cryptographic Services Module. The CSM then provides services to the various protectors through cross memory calls.

The z/OS specific protectors are basically functions that build a parameter block from application input, and then call CSM for
policy enforcement and data protection or unprotection. The following figure shows the Protegrity z/OS Protector architecture.

Protegrity z/OS Protector Guide 7.0.1 Overview of the Protegrity z/OS Protectors

Confidential 12

Figure 2-1: Protegrity z/OS Protector Architecture

2.2 Components of the z/OS Protector
This section explains all the components of the z/OS Protector.

The following are the components of the z/OS Protector:

• Protection Enforcement Point Server

• Cryptographic Services Module

• DB2 Database Protectors

• Application Protectors

• File protectors

• IMS Protectors

2.2.1 Protection Enforcement Point (PEP) Server

The PEP server, one of the key components of the z/OS Protector, is discussed in this section.

The PEP server is an UNIX compatible cross-platform server that loads the data security policy from the ESA, and makes it
available for the various protectors. It also provides audit log services to send audit information back to the ESA. It is written in C
and C++ and thus requires the IBM Language Environment to run. Protegrity provides two sample Job Control Language (JCL)
started tasks to start the PEP server and to stop it from MVS. These are designed to be used by System Automation.

2.2.2 Cryptographic Services Module

The Protegrity z/OS Protectors include an additional cryptographic server. The Cryptographic Service Manager (CSM) handles
management of protecting and unprotecting data through a cross-memory interface.

The Cryptographic Service Manager (CSM) allows centralized processing of the data and protects the encryption keys and token
tables from rogue user programs.The CSM is used by the Application Protector, Database Protector, File Protector, and IMS
Protector PEPs (FIELDPROC, EDITPROC, Cryptographic Service Interfaces, File Utility, and CSS) on Mainframe z/OS, but is
not used by the DB2 User Defined Functions.

2.2.3 DB2 Database Protectors

The DB2 Database Protectors, one of the components of the z/OS Protector, is discussed in this section.

Protegrity z/OS Protector Guide 7.0.1 Overview of the Protegrity z/OS Protectors

Confidential 13

Protegrity has three ways to protect data in a DB2 database.

• FIELDPROC

• EDITPROC

• UDFs

The DB2 FIELD PROCEDURE exit runs as part of the xxxxDBM1 task of the DB2 region. The FIELDPROC is defined in the
DDL as part of the column definition.

The EDIT PROCEDURE exit runs as part of the xxxxDBM1 task of the DB2 region. This exit protects the ROW, and not column
data. EDITPROC is also defined in the DB2 DDL, but is defined at the TABLE level and not as part of the COLUMN definition.
Since DB2 restricts EDITPROC to no parameters, Protegrity has a customization process to add the data protection method to the
EDITPROC program.

The User Defined Functions (UDFs) are available for use with VIEWs and TRIGGERs, but not all the UDFs are available on
z/OS due to DB2 limits on UDF on z/OS. The UDFs allow the most application control for data protection and unprotection, but
are also much more complicated to implement. UDFs are usually used in conjunction with VIEWs and TRIGGERs.

2.2.4 Application Protectors

Protegrity has multiple application interfaces to protect data in applications including VSAM and IMS data. These interfaces
include Language Environment (LE) compatible and non-compatible interfaces. The interfaces are either session oriented or
stateless. The two types have the same parameter lists within the type for the LE version and the non-LE version. The stateless
ones have been tested with CICS of various levels.

The APIs protect or unprotect data based upon the algorithm specified by the data element used. The interfaces only protect
or unprotect the data within the buffer passed by the application and do not care where the data comes from (file or working
storage). The interfaces are standard z/OS functions and have been used with COBOL, PL/I and ADABAS Natural applications.

2.2.5 File Protectors

An overview of the File Protectors, one of the components of the z/OS Protector, is discussed in this section.

Protegrity has two ways to protect data in flat files (QSAM files).

• Cryptographic File Utility (CFU)

• Cryptographic Sub System (CSS)

Both methods work with generation data groups as well as normal files.

The CFU is a file protection utility like IBM’s IEBGENER. This method has two input files and one output file. One input file
contains the data to be protected or unprotected, and the other input file contains the control information to tell the program what
protection method, what data columns and what records are to be protected. The output file contains the protected or unprotected
data that was processed. Only one set of columns or records can be processed at a time. The entire file is processed at once.

The CSS has two flavors – PTYPAMLT and PTYPAMEX. Both use the JCL DD statement SUBSYS capability to protect or
unprotect data in the input or output buffer. One method keeps the same record format, as the output data. This method only
supports length preserving algorithms. The other method adds header records to the output data and uses that information to
reformat the data on input as the program expects.

2.2.6 IMS Protectors

A general overview of the IMS Protectors is discussed in this section.

Protegrity has three ways to protect data in the IMS database.

• PTYPIMS DBDEXIT

Protegrity z/OS Protector Guide 7.0.1 Overview of the Protegrity z/OS Protectors

Confidential 14

• PTYPIMSC DBDEXIT

• Protegrity z/OS Application protector (PTYPSLL/PTYPSLI)

The IMS Segment edit/compression exit routine, PTYPIMS will protect the data in IMS database during LOAD/INSERT and
unprotect the data during SELECT.

The IMS Segment edit/compression exit routine, PTYPIMSC will compress the repetitive data in IMS database before protect
during LOAD/INSERT and after unprotect the data during SELECT, it will decompress the data.

The data in the IMS database can also be protected/unprotected using the z/OS Stateless Application protectors – PTYPSLL and
PTYPSLI.

2.3 Features of z/OS Protector
The features of z/OS Protector are discussed in this section.

All the z/OS specific protectors are written in mainframe assembler and are designed explicitly to run on z/OS. They are
re-entrant, re-usable, and all run in 31-bit mode or 64-bit mode as needed. Where necessary (such as the APIs), the programs are
Language Environment compatible.

All data protection and unprotection plus the enforcement of the Protegrity data security policy is done away from the user
address space in the protected CSM address space. All keys and other information needed for data protection are in fetch
protected storage to restrict access.

All data protection and unprotection is done on z/OS.

2.4 Limitations
This section lists the limitations of the z/OS Protectors.

• The z/OS protectors do not support all the token data types that are supported on other platforms.

• The z/OS UDFs do not support data types like LONG VARCHAR and BLOB.

• The z/OS Protectors (except z/OS UDFs) do not support Null handling.

• The z/OS Protectors do not support the DTP2 algorithms.

2.5 Supported Database Matrix
This section lists the supported database matrix for the z/OS Protectors.

Table 2-1: Supported Database Matrix

Database Supported Protectors Supported Platforms

DB2 on z/OS DB2 9.1

DB2 10.1

DB2 11.1

DB2 12.1

FIELDPROC

EDITPROC

z/OS 2.1

z/OS 2.2

z/OS 2.3

z/OS 2.4

z/OS 2.5

Protegrity z/OS Protector Guide 7.0.1 Overview of the Protegrity z/OS Protectors

Confidential 15

Database Supported Protectors Supported Platforms

UDFs

IMS on z/OS v13

v14

v15

z/OS 2.1

z/OS 2.2

z/OS 2.3

z/OS 2.4

z/OS 2.5

Protegrity z/OS Protector Guide 7.0.1 Overview of the Protegrity z/OS Protectors

Confidential 16

Chapter 3
Prerequisites for Installing the z/OS Product

3.1 PEP Server on Open MVS (Unix System Services)

3.2 Cryptographic Servers on z/OS MVS

This section describes the z/OS system requirements for product installation.

3.1 PEP Server on Open MVS (Unix System Services)
This section provides information about the prerequisites and additional setup requirements for installing the PEP server on Open
MVS.

3.1.1 Environment Requirements

This section describes about the environment requirements for the z/OS protector installation.

Before setting up the PEP server for Open MVS (UNIX System Services), ensure that your environment meets the minimum
requirements. The following table shows the environment requirements.

Table 3-1: Environment Requirements

Free Disk Space Configuration

100 MB per node PEP server and repository

262 MB (67072 pages) Inter-process communications memory. This can be broken down to
200 MB for tokens, 2 MB for policy, 2 MB for policy information,
and 8 MB for logs. This is used for communications between the
various servers. If tokens are not going to be used, you need to modify
the pepserver.cfg file to disable tokenproc. This reduces the
size by 200 MB.

Note: If the Log Server is not going to be continuously active, then you will need additional storage for the PEP server ZFS file system to
maintain audit log records until the Log Server is active.

You can run the MVS operator command d omvs,o to view current configuration settings. Review the IPCSHMMPAGES value
representing the number of 4K pages that are available.

Run the set IPCSHMMPAGES command to increase the value, if required. The BPXPRMxx member used for system IPL must be
updated to set the increased value to permanent.

Run the SETOMVS IPCSHMMPAGES command to increase the number of shared memory pages.

Protegrity z/OS Protector Guide 7.0.1 Prerequisites for Installing the z/OS Product

Confidential 17

3.1.2 Setup Requirements

This section contains the additional setup requirements that should be met before you can proceed with the PEP server
installation

To setup:

1. It is strongly suggested that a separate mount point should be used for installing the PEP server. This mount point can be
wherever you want, with the default and documented mount point of /opt/protegrity. The underlying file can be
HFS or ZFS and needs to be at least 100 MB in size with expansion possible, and 200 MB in size if tokens are used. The
PTY701Z2 sample JCL in ptyhlq.SPTYSAMP can be modified and used to create a ZFS mount point for the PEP server.

Note: The HFS files can be created from the ISPF 3.2 menu and ZFS files can be created from the tso ishell (Refer to the
cryptographic server installation information below for who needs what access rights to the directories that will be created here).
The .../defiance_dps/bin subdirectory can be shared across LPARs that will run the same version of the PEP server, but
the .../defiance_dps/data subdirectory needs to be unique for each LPAR. The $SYSNAME system variable can be used
in the various scripts and JCL to make the subdirectory unique.

2. Ensure that the user starting the PEP server, has BPX.DAEMON rights.

Note: The installing user needs External Security Manager (such as RACF) and Open MVS access rights to do the install.

3. Ensure that the PEP server port listening for the policy changes corresponds to the port that the ESA will use to deploy the
policy to, and is open in your Firewall setup for in-bound traffic.

4. Ensure that the IP address and the port number that the Log Server will be listening on to receive audit logs, is open in your
Firewall setup for out-bound traffic.

5. For the PEP server user, set the following parameters in either the installation’s /etc/profile or /HOME/.profile:

• _BPX_SHAREAS=YES

• _BPX_SETIBMOPT_TRANSPORT=TCPIP

6. Ensure that the localhost is correct.

For z/OS, run the following command in Open MVS command prompt: host localhost

The localhost IP address should be 127.0.0.1 or the system’s IP address. If you receive an error message instead, such as
Hostname lookup failure or Unknown, then perform the following steps:

a. Remove the IP address value from the DNS.

b. Configure the TCPIP.DATA to specify the LOOKUP LOCAL DNS.

This ensures that /etc/hosts is checked prior to the DNS.

Note:

If the host details are present in some customized file, instead of the default locations like etc/hosts, DNS resolution, or
TCPIP.DATA, then perform any of the two following suggestions to resolve hostname:

• Use the ENVAR script to set the RESOLVER_CONFIG variable that points to the file in the JCLs executing the TCP/IP functions.

• Add the RESOLVER_CONFIG=//'<dataset-name>' setting in the PTY$ENV file that is present in the SPTYSAMP file.

3.2 Cryptographic Servers on z/OS MVS
This section provides information about setting up the Cryptographic Servers on z/OS MVS.

Protegrity z/OS Protector Guide 7.0.1 Prerequisites for Installing the z/OS Product

Confidential 18

3.2.1 Setup Overview

This section describes about setting up the Cryptographic Servers on the z/OS MVS.

Before starting the installation, you should check that you have the following items available and ready:

• Servers

• Distribution Files

• Modules

3.2.1.1 Servers

In addition to the Protegrity z/OS protector, you need a workstation(s) running the ESA which manages data security policy, key
management, and auditing and reporting.

3.2.1.2 Distribution Files

The products are distributed in three files (SPTYAUTH, SPTYAUTX, and SPTYSAMP) and a ZFS.DPSxxxx.INSTALL file.

The following table describes the Distribution Files.

Table 3-2: Distribution Files

File Description

SPTYAUTH Contains the necessary executable modules.

SPTYAUTX Contains executables to interface with the PEP server under UNIX
System Services.

SPTYSAMP Contains the sample JCL.

ZFS.DPSxxxx.INSTALL Contains the PEP server and the necessary support files.

3.2.1.3 Modules

The Protegrity z/OS Protectors consists of three modules.

• The Cryptographic Services Manager (PTYPCSM module and its associated modules)

• The PEP server executable and its pieces, which runs under Open MVS (UNIX System Services)

• The actual data protectors

The following table describes these modules.

Table 3-3: Protegrity z/OS Protector Modules

Module Description

Cryptographic Services Manager
(PTYPCSM)

The PTYCSRV procedure starts the PTYPCSM module and its associated modules. This task
needs to be APF authorized and provides the basic encryption services including the security
policy enforcement. The task consists of management pieces and various service provider sub-
tasks. It provides a command interface to allow monitoring and some dynamic reconfiguration.
During startup, the main task reads a parameter file to get its startup information. Use the
MVS stop command to close this server. You can also optionally use this command to stop
PTYSPEPS.

PEP server The PTYSPEPS starts the Open MVS daemon that provides the policy and handles the audit
log records. PTYPPEPS stops the daemon.

A sample code to start these servers is included with the product. The appropriate External Security Manager, such as RACF and
Top Secret needs to be set up to allow these started tasks to execute with the appropriate authorities.

Protegrity z/OS Protector Guide 7.0.1 Prerequisites for Installing the z/OS Product

Confidential 19

3.2.1.4 Cryptographic Hardware

The IBM mainframe hardware (z-architecture) has feature code 3863 which adds cryptographic hardware to the system. This
hardware is export restricted but is generally available in the United States of America and other nations.

The default installation for Protegrity z/OS Protector will utilize this hardware if available. If the hardware is not available, then
the Database Protectors will do software encryption and decryption. This is significantly slower than the use of the cryptographic
hardware.

Contact your IBM representative if you are not sure that the hardware has been turned on. The availability of the hardware feature
is decided upon each invocation so that enabling the feature later does not require reinstalling the Protegrity software.

Protegrity z/OS Protector Guide 7.0.1 Prerequisites for Installing the z/OS Product

Confidential 20

Chapter 4
Installing the z/OS Product

4.1 Installing the PEP Server

4.2 Installing the Cryptographic Server

4.3 Activating Protegrity Data Security Platform

4.4 Deploying a Test Policy

4.5 Verifying the Installation

4.6 Upgrading the z/OS Protector

This section explains the installation of the z/OS PEP server on the Open MVS, the Cryptographic Server and the protectors on the
MVS.

Before you begin
The Protegrity z/OS product package contains the following three components:

• .TRS file - A tersed DFSMS dump of Protegrity version 7.0.1.n MVS files pertaining to the protector and the SPTYxxxx files,
and a ZFS volume that includes the PEP server shell script and a sample input for the BPXBATCH job to install the PEP server.

• LODxxxx.JCL – A text file containing the sample JCL to unterse the .TRS files.

• productname_zOS-V2-ALL_Mainframe-ALL_ALL_n.n.n.n.readme – A readme file briefing on the product.

To install the z/OS product:

1. Upload the tersed files (.TRS) to the z/OS system in binary mode. The files should be RECFM FB and LRECL
1024. BLKSIZE= 27648 is any multiple of 1024. In the product zip file, productname_zOS-V2-ALL_Mainframe-
ALL_ALL_n.n.n.n.readme is a readme file that contains information about changes and suggestions to FTP the files to
z/OS.

QUOTE SITE RECFM=FB LRECL=1024 BLKSIZE=27648 CYL PRI=150 SEC=20

2. Upload the LODxxxx.jcl to the z/OS system. Customize the JCL to specify the receiving volume in SET VOL statement.
The MVS datasets for respective protector and the ZFS.DPSxxxx.INSTALL are restored after running this JCL.

a. The LODxxxD.jcl for the Database Protector, files restored in the given VOL are:

• PTYxxxx.SPTYAUTH

• PTYxxxx.SPTYAUTX

• PTYxxxx.SPTYSAMP

• PTYxxxx.DB2AUTH

• PTYxxxx.DB2LOAD

• PTYxxxx.DB2SAMP

• PTYxxxx.UDFSAMP

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 21

• PTYxxxx.UDFSQL

• PTYxxxx.UDFUDFX

• ZFS.DPSxxxx.INSTALL

b. The LODxxxA.jcl for the Application Protector, files restored in the given VOL are:

• PTYxxxx.SPTYAUTH

• PTYxxxx.SPTYAUTX

• PTYxxxx.SPTYSAMP

• PTYxxxx.APLOAD

• PTYxxxx.APSAMP

• PTYxxxx.APSCNTL

• PTYxxxx.APSLOD

• ZFS.DPSxxxx.INSTALL

c. The LODxxxF.jcl for the File Protector, files restored in the given VOL are:

• PTYxxxx.SPTYAUTH

• PTYxxxx.SPTYAUTX

• PTYxxxx.SPTYSAMP

• PTYxxxx.FPAUTH

• PTYxxxx.FPLOAD

• PTYxxxx.FPSAMP

• ZFS.DPSxxxx.INSTALL

d. The LODxxxF.jcl for the IMS Protector, files restored in the given VOL are:

• PTYxxxx.SPTYAUTH

• PTYxxxx.SPTYAUTX

• PTYxxxx.SPTYSAMP

• PTYxxxx.IMSAUTH

• PTYxxxx.IMSLOAD

• PTYxxxx.IMSSAMP

• ZFS.DPSxxxx.INSTALL

Note:

1. The ZFS.DPSxxxx.INSTALL is used during the PEP server Installation, explained in the section Installing the PEP
Server .

2. The PTYxxxx.SPTY* libraries are used to install the Cryptographic Server, explained in the section Installing the
Cryptographic Server .

3. The PTYxxxx.SPTYSAMP library contains the sample JCL’s to install the Protegrity z/OS product.

4. The PTYxxxx.AP* libraries are used to install the Application Protectors, explained in the section Installing and
Customizing the Application Protector on z/OS.

5. The PTYxxxx.FP* libraries are used to install the File Protectors, explained in the section Installing and Customizing the
File Protector on z/OS.

6. The PTYxxxx.DB2* libraries are used to install the Database Protectors (FIELDPROC and EDITPROC), explained in
section Setting Up Database Protector on Mainframe z/OS.

7. The PTYxxxx.UDF* libraries are used to install the Database Protectors (UDFs), explained in the section Installing UDFs.

8. The PTYxxxx.IM* libraries are used to install the IMS Protectors, explained in the section Setting Up the IMS Protector.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 22

4.1 Installing the PEP Server
The PEPINST.jcl is the JCL to use the BPXBATCH to install the PEP server.

To install the PEP server:

1. Using the ISHELL or OMVS, create a new directory, for example, dps701, under /usr/local/pty since the PTY701Z
JCL will mount the ZFS.DPSxxxx.INSTALL file at this path.

Note: If you want to use some different mount point, edit the PTYxxxx.SPTYSAMP(PTY701Z) accordingly.

Note: Once the PEP server is installed, the volume can be unmounted. To unmount the volume, run the following command:

/usr/sbin/unmount/usr/local/pty/dps701

2. The following will be restored on the mount point, /usr/local/pty/dps701:

• PepServerSetup_zOS_Mainframe_7.0.1.x.sh

• PepServerSetup_zOS_Mainframe_7.0.1.x.tar.Z

• pepserver.install.input

Note: The pepserver.install.input file is the STDIN to the BPXBATCH step for installing the PEP server. You can edit
the pepserver.install.input file using the ISHELL or OMVS, and specify your install directory as the third line and
the ESA address as the fourth line. For more information about installing the PEP server, refer to the section Sample Code to use
BPXBATCH to install PEP Server.

3. Run the PTYxxxx.SPTYSAMP(PEPINST). The PEP server will be installed in the install directory given in the
pepserver.install.input.

4. Run the GetCertificates from the <install dir>/defiance_dps/bin directory.

./GetCertificates –u <admin user>:<admin user password>

The Certificates from the ESA will be saved in the <install dir>/defiance_dps/data directory. The
GetCertificates script uses CURL, an Open Systems utility, to retrieve the certificates from the ESA. Protegrity
has compiled this CURL utility that can be used with Open MVS to retrieve the certificates and other information from the
ESA. If the version of CURL that Protegrity has supplied, does not work on your system, then follow the manual method
of downloading the certificates that is described in the section Appendix A: Uploading Certificates from ESA to z/OS
Manually.

Note: The Integrated Cryptographic Services Facility (ICSF) that is used to generate random numbers, should be started before using
the GetCertificates script.

Note: The installation script stores the installation directory path in the pepsrvctrl executable script. You may plan to move
or copy this installation to a different LPAR or to a different directory path on the install system, for example, when you are
testing a patch and wish to make the patch permanent. In such cases, you must edit (using oedit) pepsrvctrl in the …/
defiance_dps/bin directory. Modify the line starting with PTY_BASE_DIR= to point to the new directory structure. The path
provided must be the complete directory structure from the root base. Relative directory structure is not permitted.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 23

The following example shows a sample to set the path:

000011 # Base directory where Defiance DPS server is installed.
000012 # E.g. /opt/protegrity/defiance_dps
000013 PTY_BASE_DIR=/opt/protegrity/dps701/defiance_dps

Note: Do not delete the default directories created during the PEP server installation.

Note:

The support of various special symbols in the password, depends on the codepage selected on the z/OS Protector. The recommended
codepage is 1047.

For additional information on usage of special symbols in passwords, refer to the section Password Policy for All Appliance Services
in the Protegrity Appliances Overview Guide 9.1.0.4.

5. Make the necessary changes in the pepserver.cfg file located in the <install dir>/defiance_dps/data
directory. The sample JCL to update the pepserver.cfg file from the MVS side, is demonstrated in the section Sample
JCL to execute script to update pepserver.cfg.

Note: If you intend to use more than one PEP server, then you need one pepserver.cfg file for each server. The
pepserver.cfg file must be renamed with a unique name, for example pepserver1.cfg, pepserver2.cfg, and
so on. You would also want to specify a different filename for the pepserver.log for each PEP server.

6. Verify the access rights. Ensure that the library path variable for your system is correctly set and the appropriate directories
exist.

Note: The PEP server startup task (sample JCL PTYSPEPS group) should own the install directory structure.

4.1.1 Configuring case sensitivity in PEP Server for Policy users

The PEP server fetches users from the ESA and can treat these users as case sensitive, which is the default, or case insensitive. By
configuring the case sensitive parameter, you can enable case insensitive policy user names.

Before you begin
Ensure that you are logged in to the protector machine and the protector is installed and configured.

To enable the case insensitive user name support in the PEP server:

1. Navigate to the additional mount point reference /opt/protegrity/<installdirectory>/defiance_dps/
data/ directory of the protector.

2. Open the pepserver.cfg file in a text editor.

3. Under the [member] section, configure the case-sensitive parameter as follows.

Specifies how policy users are checked against policy.
yes = (The default) policy users are treated in case sensitive manner.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 24

no = policy users are treated in case insensitive manner.
case-sensitive = no

Note: The parameter case-sensitive is either marked as a comment or set to “yes” by default.

#case-sensitive = yes

The value of the case-sensitive parameter must be uncommented and then set as “no” to enable case insensitive user name support.

case-sensitive = no

4. Restart the PEP server.

4.2 Installing the Cryptographic Server
The MVS datasets restored from the LODxxxx.jcl will install the Cryptographic server.

To install the Cryptographic Server:

1. The libraries PTYxxxx.SPTYAUTH and PTYxxxx.SPTYAUTX must be APF authorized or the load modules included
must be copied to authorized libraries, and the sample invocation JCLs from PTYxxxx.SPTYSAMP, modified to point to
the new libraries. The SPTYAUTX library must be a PDSE since it contains C LE modules and the interface to call them.

2. Copy PTYCSRV, PTYSPEPS, and PTYPPEPS sample procedures from PTYxxxx.SPTYSAMP to your procedure library
and customize. This can be done using PTYxxxx.SPTYSAMP (JMVS) which will update COMMID and additional
arguments in respective procedure and copy the started tasks in procedure library, USER.PROCLIB. For more information
refer to the section Details on JMVS jcl to install Cryptographic Server.

The required accesses and authorities are:

• The PTYCSRV is the main driving JCL. Needs read authority to the SPTYAUTH and SPTYAUTX libraries. In addition, it
needs read authority to wherever the PTYPARM member from the SPTYSAMP library is set up. By default, this task will
start PTYSPEPS started task during startup and PTYPPEPS during shutdown.

• The PTYSPEPS is the secondary task and is also started by itself, during the PTYCSRV startup. This task needs Open
MVS authority including read and execute access to the installdirectory/defiance_dps/bin directory and
read/write/execute access to the installdirectory/defiance_dps/data directory. Due to Open MVS rules
for BPXBATCH usages, this started task user will need uid(0) (or BPX.SUPERUSER) authority and BPX.DAEMON
authority.

• The PTYPPEPS is the tertiary task that stops PTYSPEPS. It needs Open MVS authority including read and
execute access to the installdirectory/defiance_dps/bin directory. Due to the Open MVS rules for the
BPXBATCH usages, this started task user will need uid(0) (BPX.SUPERUSER) authority.

Note: If the PEP server is stopped incorrectly, or if it goes down, then the policy that exists in the shared memory is removed. If
you terminate the PEP server process, then the PEP server shared memory needs to be removed manually (use the ipcrm -m id
command).

If you need to gracefully shut down the PEP server, then run the following command:

/s PTYPPEPS

When the PEP server is started again, the policy will be recovered from the backup table in the PEP server repository.

Note: Do not purge PTYSPEPS. It is recommended to cancel PTYSPEPS using the following command:

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 25

/c PTYSPEPS

Note: The PTYCSRV procedure invokes the Cryptographic Services Manager Task and auto starts the other tasks. All tasks will
need to be started before any invocation of any of the database protectors including even the CREATE TABLE to add EDITPROC or
FIELDPROC or the ALTER TABLE to add FIELDPROC.

3. Run s ptycsrv from the system console, to start PTYCSRV and other Protegrity servers.

Note: For the first invocation of the PEP server, use the PTYSPEPS procedure to allow enough time to deploy the policy from the
ESA server to the new PEP server.

4. Run p ptycsrv from the system console, to end PTYCSRV and other Protegrity servers.

Note: If you do not care about any audit log records that may still be in memory, then you can run p ptycsrv immediate to
stop the servers. This is an immediate stop, and any remaining audit log records are discarded.

Run f ptycsrv,d log to find out how many audit log records may still be in memory.

4.2.1 Sample Jobs to Verify the Installation

You can verify your installation by running sample jobs and checking their output for each protector that you have installed.

To start/stop the pepserver and cryptographic Server, refer to the following sample jobs:

• Starting PEP Server

• Stopping PEP Server

• Starting Cryptographic Services Task

4.2.1.1 Starting PEP Server

This section describes about the procedure to start the PEP Server.

The user used for the PTYSPEPS and PTYPPEPS tasks needs to have OMVS RACF permission BPX.DAEMON and to have
root uid=0 within the OMVS. The uid=0 is necessary because the pepsrvctrl script used to run the PEP Server changes
directories as part of the startup and shutdown procedure.

//*--
//* PTYSPEPS - Start the Protegrity Policy Enforcement Point Server
//*
//* Note: This procedure is automatically started by the
//* Protegrity Defiance DPS Data Protector startup
//* started task. Please do not start it manually
//* except as instructed during the initial install
//* or as instructed by Protegrity support personnel.
//*
//* Customize this procedure to meet your requirements by changing the
//* following parameter on the PROC statement:
//*
//* INSTLDIR='path' HFS directory where the PEP Server is installed.
//* This is the same directory that was specified as
//* the installation directory in the PEP Server Setup
//* Wizard.
//*
//* Note: UNIX file paths are often long and the PARM in the procedure
//* contains the specified path as well as some other text. The
//* length of the PARM field is limited to 100 bytes.
//*
//* The JCL continuation rules for literals is defined by the following
//* extract from the "IBM z/OS V1R7.0 MVS JCL Reference" manual:

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 26

//*
//* To continue a parameter that is enclosed in apostrophes:
//* 1. Extend the parameter to column 71. Do not code an apostrophe in
//* column 71 of a JCL statement that is continued. The system
//* interprets the apostrophe in column 71 as the final character in
//* the statement and ignores the continuation.
//* 2. Code // in columns 1 and 2 of the following statement.
//* 3. Continue the parameter in column 16 of the following statement
//* even if this splits the parameter. Trailing blanks or commas
//* within apostrophes do not indicate a continued statement; the
//* system treats them as part of the parameter.
//*
//* Example (commented out):
//* ... PROC INSTLDIR='/directory_1/directory_2/opt/protegrity/defia
//* nce_dps'
//*
//*--
//*
//PTYSPEPS PROC INSTLDIR='/opt/protegrity',PTYHLQ=PTY
//PTYSPEPS EXEC PGM=BPXBATCH,REGION=0M,TIME=NOLIMIT,
// PARM='sh &INSTLDIR/defiance_dps/bin/pepsrvctrl start'
//STDOUT DD PATHDISP=KEEP,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU,
// PATH='&INSTLDIR/defiance_dps/data/ptyspeps.out'
//STDERR DD PATHDISP=KEEP,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU,
// PATH='&INSTLDIR/defiance_dps/data/ptyspeps.err'
//STDENV DD DISP=SHR,DSN=&PTYHLQ..SPTYSAMP(PTY$ENV)
// PEND

4.2.1.2 Stopping PEP Server

The sample code in this section describes about the procedure to stop the PEP Server.

//*--
//* PTYPPEPS - Stop the Protegrity Policy Enforcement Point Server
//*
//* Note: This procedure is automatically started by the
//* Protegrity Defiance DPS Data Protector started
//* task when shutting down. Please do not start it
//* manually unless the Data Protector started task
//* (default name: PTYCSRV) has abnormally terminated
//* without stopping the PEP Server.
//*
//* Customize this procedure to meet your requirements by changing the
//* following parameter on the PROC statement:
//*
//* INSTLDIR='path' HFS directory where the PEP Server is installed.
//* This is the same directory that was specified as
//* the installation directory in the PEP Server Setup
//* Wizard.
//*
//* Note: UNIX file paths are often long and the PARM in the procedure
//* contains the specified path as well as some other text. The
//* length of the PARM field is limited to 100 bytes.
//*
//* The JCL continuation rules for literals is defined by the following
//* extract from the "IBM z/OS V1R7.0 MVS JCL Reference" manual:
//*
//* To continue a parameter that is enclosed in apostrophes:
//* 1. Extend the parameter to column 71. Do not code an apostrophe in
//* column 71 of a JCL statement that is continued. The system
//* interprets the apostrophe in column 71 as the final character in
//* the statement and ignores the continuation.
//* 2. Code // in columns 1 and 2 of the following statement.
//* 3. Continue the parameter in column 16 of the following statement
//* even if this splits the parameter. Trailing blanks or commas
//* within apostrophes do not indicate a continued statement; the
//* system treats them as part of the parameter.
//*
//* Example (commented out):
//* ... PROC INSTLDIR='/directory_1/directory_2/opt/protegrity/defia

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 27

//* nce_dps'
//*
//*--
//*
//PTYPPEPS PROC INSTLDIR='/opt/protegrity'
//PTYPPEPS EXEC PGM=BPXBATCH,REGION=0M,
// PARM='sh &INSTLDIR/defiance_dps/bin/pepsrvctrl stop'
// PEND

This procedure is invoked by PTYCSRV during shutdown by default to stop the PEP Server. If you customize this procedure as a
different name, then you also need to change the PTYCSRV procedure. You also need to make the same changes to PTYSPEPS
to start the PEP Server.

4.2.1.3 Starting Cryptographic Services Task

The sample code in this section shows how to start the cryptographic services task.

//*--
//* PTYCSRV - Start the Protegrity Defiance DPS Data Protector
//*
//* Customize this procedure to meet your requirements by changing the
//* following parameters on the PROC statement:
//*
//* PTYHLQ=PTY Protegrity Defiance DPS high level qualifier
//*
//* START=AUTO Startup type: AUTO ! WARM ! COLD
//*
//* COMMID=0 Communication id used by the PEP Server
//* This value must match the value specified by the
//* communicationid parameter in the PEP Server
//* configuration file, pepserver.cfg.
//* The default now agrees with the PEP Server
//* default
//*
//* PEPSPROC=PTYSPEPS PEP Server startup procedure
//*
//* PEPPPROC=PTYPPEPS PEP Server shutdown procedure
//*
//*--
//*
//PTYCSRV PROC PTYHLQ=PTY,START=AUTO,COMMID=0,CSTPROC=,
// PEPSPROC=PTYSPEPS,PEPPPROC=PTYPPEPS,
// PARMS=
//PTYCSRV EXEC PGM=PTYPCSM,TIME=1440,REGION=0M,
// PARM='START=&START,COMMID=&COMMID,CSTPROC=&CSTPROC,PEPSP
// ROC=&PEPSPROC,PEPPPROC=&PEPPPROC,&PARMS'
//STEPLIB DD DISP=SHR,DSN=&PTYHLQ..SPTYAUTH
// DD DISP=SHR,DSN=&PTYHLQ..SPTYAUTX
//SPTYPARM DD DISP=SHR,DSN=&PTYHLQ..SPTYSAMP(PTYPARM1)
//PTYDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
// PEND

4.3 Activating Protegrity Data Security Platform
After all the components are installed, you can activate the Protegrity Data Security Platform. Separation of duties, which is a key
feature in the Protegrity Data Security Platform, is enforced by having different functions in the organization performing different
tasks. The activation steps in this section show that the Protegrity Data Security Platform separates the duties of operating the
database from configuring and maintaining the security policy. For information on policy creation and deployment, refer to the
section Creating and Deploying Policies in the Policy Management Guide 9.1.0.4. The Protegrity data security policy uses data
elements as the primary method of defining the data protection method to be used. However, just knowing the data protection and
unprotection method is not enough information. The Protegrity software also needs to know WHO can cause that data protection
or unprotection. Protegrity does this be defining roles that then are assigned privileges for data protection or unprotection. The
data users are then assigned to these roles by the Security Officer. The Protegrity z/OS protectors use the RACF USERID or
the DB2 Authorized user as the policy user. For the purposes of this document, RACF USERIDs is equivalent to Top Secret
USERIDs or ACF/2 USERIDs.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 28

To activate the Protegrity Data Security Platform:

1. Extract the RACF (ESM) USERIDs into a flat file that need to access data to be controlled by the policy. Privileges to the
data will be defined for each user (or role) during the policy creation. This file needs to be downloaded to the ESA and
defined in the Member Source tab of Policy Management.

Note: You can, alternatively, create a user and a group file for the Member Source server. For more information about Member Source
server, refer to the section Working with Member Sources in the Policy Management Guide 9.1.0.4). If you create the user and group
list manually, then keep in mind that the z/OS User ID or the Group ID are in upper case and the length must not exceed eight
characters.

2. Configure data stores and member sources in Policy Management.

3. Create a data security policy in Policy Management.

Note: If you want to transfer protected data to or from a non-z/OS platform, then select non-CUSP algorithm or tokenization.

4. Deploy the policy to PEP server on z/OS data-store.

The Protegrity Data Security Platform is activated.

4.4 Deploying a Test Policy
This section describes the steps about how to build and deploy a test policy. For more information about policy creation and
deployment refer to the section Creating and Deploying Policies in the Policy Management Guide 9.1.0.4.

Before you begin
You need to build and deploy a simple test policy in Policy Management before you can perform installation verification.

To build and deploy a test policy in ESA:

1. Navigate to Policy Management > Data Elements & Masks to create the data elements.

2. Navigate to Policy Management > Roles & Member Sources to define Roles with specific access rights to the data to be
protected.

Note: The username must be in uppercase and length of the username must not exceed eight characters.

Note: The new behavior of policy users inheriting the permissions from the default role for the data elements is applicable for the
z/OS Protector 7.0.1 release from the build number 7.0.1.12 and later builds. For more information about inheriting permissions for
users, refer to the section Inheriting Permissions for Users in Multiple Policies and Roles in the Policy Management Guide 9.1.0.4

3. Navigate to Policy Management > Policies & Trusted Applications to create Policy.

4. Navigate to Policy Management > Data Stores to create zOS data store.

5. On z/OS, start the PEP server by starting the PTYSPEPS procedure.

Note: This is a one-time procedure to deploy the first policy to the PEP server. Hereafter, the PEP server will be automatically started
and stopped by the Cryptographic Service.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 29

6. Navigate to Policy Management > Policies & Trusted Applications to deploy the policy to z/OS data-store.

7. On z/OS, stop the PEP server by starting the PTYPPEPS procedure.

8. Start the PTYCSRV procedure.

4.5 Verifying the Installation
You can verify that the installation is successful by reviewing the messages that appear during the PTYCSRV startup on the
system console and in the PTYCSRV job log.

The following code displays the messages.

PTY001I Protegrity Data Security Platform V7.0.1.1 startup in
PTY001I progress.
PTY002I (C) Copyright 2006-2017 Protegrity Corporation
PTY002I All Rights Reserved
PTY050I Protegrity Data Security Platform startup parameters:
PTY050I START: AUTO
PTY050I COMMID: 0
PTY050I CSTPROC:
PTY050I PEPSPROC: PTYSPEPS
PTY050I PEPPPROC: PTYPPEPS
PTY050I LOGQBS: 10
PTY050I LOGMQB: 123
PTY050I LOGRCDI: 10
PTY050I LOGMAXLOCKTIME: 50
PTY050I LOGMAXDELAY: 200
PTY050I LOGSHMPCT: 15
PTY050I LOGFILTER: 6
PTY050I PEPSTIME: 240
PTY050I USERNAME: (USERID,GROUPNAME)
PTY050I FROM_CODEPAGE: 1047
PTY050I TO_CODEPAGE: 923
PTY003I Protegrity Data Security Platform Cryptographic Service
PTY003I Manager startup complete.

PTY041I Protegrity PEP Server startup in progress.

PTY042I Protegrity PEP Server is started.
PTY031I Protegrity Data Security Platform policy updated.

The following table describes types of informational messages displayed.

Table 4-1: Message Types

Message Type Description

PTY050I These messages should agree with the values assigned in the
PTYPARM file.

PTY607I This message indicates that hardware encryption and decryption
will be used. If your site is running on an older system or if the
cryptographic hardware is not enabled, then you will receive a slightly
different message stating that software encryption will be done.

PTY031I This message is the signal that the cryptographic services are
available and ready for use. This message will be repeated whenever
PTYSPEPS updates the policy. This happens during deployment of a
new policy and whenever a time interval expires within the policy, i.e.,
at the beginning and end of the work day as defined in the policy.
Note that the PTYSPEPS ended message during this time is normal
and expected. PTYSPEPS uses BPXBATCH to start the PEP server
daemon. Once the daemon is started, the MVS task is finished and
ends, but the daemon continues to run. Only if the PTY031I message
does not occur is there a problem and you will then need to follow
debugging procedures.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 30

You can verify the installation by starting the PTYCSRV procedure which will start the Protegrity Cryptographic Services
Manager Task and the other servers.

Note: Use the procedure customized during installation. All services can be stopped by stopping the PTYCSRV procedure from an
operator console.

4.5.1 PTYCSRV Return Messages

The PTYCSRV may issue several messages that should be monitored by system automation.

The following table describes the PTYCSRV messages.

Table 4-2: PTYCSRV Messages

Message ID Definition Issued when...

PTY031I Policy updated. The security policy is loaded and available for
use. Once this message is issued, ciphering
operations can begin.

PTY045I PEP Server startup timed out. The handshake between the Open MVS PEP
Server and PTYCSRV fails. This means that
the security policy is not loaded and ciphering
cannot happen.

PTY052I The maximum number of allowed buffer
queue blocks specified on the LOGMQB start-
up parameter has been reached. Log records
may be lost.

The last LOGQBS buffer is allocated.
Normally this means that for some reason the
Open MVS PEP Server is not sending log
records at all or quickly enough to the ESA
appliance. Check the pepserver.log in the PEP
Server data sub-directory

PTY053I Log records have been lost due to insufficient
buffer queue storage. This message may
precede or follow PTY052I. If it precedes
PTY052I by several seconds, then increase
LOGQBS in PTYPARM before the next
restart of PTYCSRV.

A log message buffer is completely full and
another log record is created by PTYCSRV
can allocate another buffer or the maximum
number of buffers has been reached.

PTY080W The security policy has been locked by the
PEP Server because logging disk space has
been exhausted. Cryptographic services are
suspended until the policy is unlocked. Refer
to the pepserver.log for details.

The diskfullalert value in the Open MVS
PEP Server pepserver.cfg is reached.
No further ciphering can take place until
PTY081I message is issued. There is mostly
likely an issue with the PEP Server sending
log records to the ESA appliance.

PTY082W The disk space available to the PEP Server for
logging is less than the specified minimum.
Refer to the pepserver.log for details.
If available disk space is exhausted, then the
policy may be locked or logging may be
suspended.

The threshold value the Open MVS PEP
Server pepserver.cfg is reached.
Further logging will still occur, but the
reasons why the threshold has been reached
should be investigated. If nothing is done,
then the diskfullalert may be reached and this
can cause ciphering problems as mentioned in
PTY080W.

PTY083I The disk space shortage for PEP Server
logging has been relieved. Refer to the
pepserver.log for details.

Disk space becomes available for continued
logging.

PTY084W The disk space available to the PEP Server
for logging has been exhausted. Refer to
the pepserver.log for details. Logging
is suspended until sufficient disk space is
available. In addition, refer to the message
PTY080W.

The diskfullalert value is reached.
The diskfullaction parameter in
pepserver.cfg determines whether this
message or PTY080W will be issued when the
diskfullalert value is reached.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 31

Message ID Definition Issued when...

PTY085I The disk space shortage for PEP Server
logging has been relieved. Refer to the
pepserver.log for details. Logging is
resumed.

The disk space problem for the Open MVS
PEP Server is resolved. It is the inverse of
PTY084W.

PTY120W Message PTY120W is returned every 24
hours until the policy in shared memory is
updated.

1. The policy that exists in the shared
memory has not been updated in 24 hours.

2. When ESA is suspended, or powered off.

PTY121E NOCST is disabled in v6.5.2 and later
versions, due to which software encryption or
decryption for 3DES is disabled.

Software encryption or decryption for 3DES
is not supported with PTYPFPS.

PTY124W Warns the system about the policy issue. Policy refresh message is issued and there are
no users in the policy.

4.6 Upgrading the z/OS Protector
This section demonstrates the process to upgrade the z/OS Protector.

To upgrade the z/OS protector:

1. Keep the existing version running if required.

2. Install the PEP server into a new volume or to a new subdirectory on the current volume. This includes loading the
certificates and keys.

3. Install the new MVS libraries into new libraries and authorize the new libraries.

4. Change the communications ID on the new PEP server to some other communications ID in the pepserver.cfg file.

5. Customize the PTYxxxx JCL sample to point to the new PEP server and new communications ID. It is recommended that
you use new procedure names for this step.

6. Start the new PEP server and deploy the policy. Both versions of the PEP server can be run at the same time.

7. Verify that the policy is deployed and that roles and token elements (if any) have been received. Refer to the
pepserver.log file for this information.

8. At a convenient time, stop the old Cryptographic Services Manager and, if using the Database Protector, any DB2 regions
using the database manager.

9. If using the Database Protector, replace the old version library DD statement with the new one in the xxxxDBM1 JCL. It is
recommended to just comment out the old one at this point. Restart DB2.

10. Start the new Cryptographic Services Manager.

Protegrity z/OS Protector Guide 7.0.1 Installing the z/OS Product

Confidential 32

Chapter 5
Application Protector on Mainframe z/OS

5.1 Installing and Customizing the Application Protector on z/OS

5.2 Stateless Interfaces (APIs): PTYPSLI, PTYPSLL, and PTYPSLC

5.3 Stateful Interfaces: PTYPCXI and PTYPCXL

Protegrity provides the Cryptographic Service Interfaces (CSx and CXx) as Application Protector solution on Mainframe z/OS
platform.

The Cryptographic Service Interface for z/OS provide multiple application programming interfaces that can be called from application
programs to protect and unprotect file records or fields and any other application data. All the protect and unprotect requests are
authenticated in accordance with your security policy defined in the Member Source tab of Policy Management.

The cryptographic service interfaces use a policy data element name specified in the call and the operating system USERID to validate
the protection or unprotection defined in the security policy. They can use the same data element name that is employed to protect
DB2 or other data or they can work with a different data element. Some of the interfaces are designed to be called by Language
Environment programs and some are designed to be called by Assembler programs.

The PTYPCSI, PTYPCXI and PTYPSLI are tolerant of but do not conform to the IBM Language Environment. If you want to call the
interfaces from a C or C++ program, you must specify #pragma …(OS).

The PTYPCSL, PTYPCXL, and PTYPSLL conform to the Language Environment. You must specify #pragma …(OS) for all these
programs when calling them from C or C++.

To use any of these programming interfaces, call the appropriate routine from an application program passing the data to be protected
or unprotected and the related control data including the policy data element name used to authenticate the access.

Note:

Protegrity Data Security Platform does not make use of the existing IBM software product, z/OS Integrated Cryptographic Service Facility
(ICSF). It is not required to use any of the supported cryptographic hardware and to perform software-only encryption and decryption.

5.1 Installing and Customizing the Application Protector on z/OS
This section explains the installation of the Application Protector solutions on Mainframe z/OS. It provides a high-level setup
overview as well as post-installation verification steps.

5.1.1 Installing the Cryptographic Service Interfaces on Mainframe z/OS

The procedures in this section explain in high level how to install the CSs and CXx Interfaces.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 33

To install the Cryptographic Service Interfaces on Mainframe z/OS:

1. Install the PEP server. For more information about installing the PEP server, refer to the section Installing the PEP Server.

2. Install the Cryptographic Services. For more information about installing the Cryptographic Services, refer to the section
Installing the Cryptographic Server.

3. Install the Cryptographic Service Interface libraries.

The PTYxxxxx.APLOAD, PTYxxxxx.APSAMP, PTYxxxxx.APSCNTL, and PTYxxxxx.APSLOD files are restored
using LODxxxA.jcl

APLOAD Library containing the API executables. These are modules to be linked to user application programs. The
linking maybe done dynamically or statically. Refer to the appropriate Programming Language manual for
how to do the dynamic linking. Are standard load module libraries. These are PDS libraries but may be PDS-E
if desired.

APSAMP Library containing the API samples.

Is a RECFM F LRECL 80 JCL type library and may be either PDS or PDS-E.

APSCNTL Optional library that contains several of the sample programs linked with the appropriate API executable.

Contains the compiled and linked versions of the sample programs in APSAMP. This is a PDS library but may
be PDS-E if desired.

APSLOD Optional library containing the AP Standard and AP Client executables. The H files describing the functions
are included in the Open MVS install.

4. Activate the Protegrity Data Security Platform when the Cryptographic Services Interfaces are installed. For more
information about activating the Protegrity Data Security Platform, refer to the section Activating Protegrity Data Security
Platform.

5. Deploy a test policy. For more information about deploying a test policy, refer to the section Deploying a Test Policy.

6. Verify the PEP server installation. For more information about verifying the installation of the PEP server, refer to the section
Verifying the Installation.

7. Verify the protector installation. For more information about verifying the installation of the Application Protector on z/OS,
refer to the section Verifying Installation.

5.1.2 Verifying Installation

This section outlines the process of verifying the Application Protector installation on z/OS.

To verify the installation:

1. Start the PTYCSRV which will start the PEP server automatically.

2. Define or update a policy for the installation verification test using Policy Management from the ESA.

• For all APIs, use either CUSP or non-CUSP algorithms, or tokens. Note that the application needs to check the output
length of the data (protected data for protection or clear-text data for unprotection) as the length of the data will change
if non-CUSP or non-length preserving tokens are used. The application should also handle the error that may be returned
showing that the output buffer size is not large enough.

• On encryption, the Non-CUSP algorithms cause the output data to be larger than the input data, due to the padding
added to the clear text data before encryption. However, we remove the padding before decryption, and the Non-CUSP
algorithms causes the output data to be smaller than the output data. For more details, refer to the section CUSP in the
Protection Methods Reference Guide 9.2.0.0.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 34

3. Create the input test data by:

RECEIVE INDSN(‘PTYxxxx.APSAMP(CFUDATAF)’) DSN(‘PTYxxxx.APSAMP. CFUDATAF’)

4. For PTYPSLL/SLI, customize the job in PTYxxxx.APSCNTL (PTYJSL1- compile & PTYRSL1 - run) as directed by the
inline commentary and submit the job.

5. Examine the results.

Get the output of the PRINT step of the PTYRSL1 job and verify INDATA, MASTER, and OUTDATA files. The INDATA
files consists of input data, the MASTER file consists of cipher text, whereas the OUTDATA files consists of clear text.

For further verification, look out for a confirmation message in the IEBCOMPR utility, such as, “END OF JOB-TOTAL
NUMBER OF RECORDS COMPARED = 00001000”. This indicates that the OUTDATA file, that includes the clear text
(decrypted data), is same as the original input data in the INDATA file.

Note: For more details on sample programs, refer to the section Appendix E: Compilation of Programs.

5.2 Stateless Interfaces (APIs): PTYPSLI, PTYPSLL, and PTYPSLC
The Interface modules PTYPSLL, PTYPSLI and PTYPSLC are recommended Stateless Interfaces.

The PTYPSLI is not Language Environment compliant, but is compatible with it. It uses the z/OS MACROs for storage.

The PTYPSLL is Language Environment compliant and uses the LE components for storage.

The PTYPSLC is Language Environment complaint and uses LE components for storage just like PTYPSLL.

• It checks for an additional parameter after the two external IV parameters. The parameter provides an alternate user ID to
access the APIs.

Caution: From v7.0 onwards, Protegrity has deprecated the support of PTYPCSL, and PTYPCSI Stateless Interfaces.

5.2.1 COBOL Parameters to call Stateless Interfaces

The PTYPSLL, PTYPSLI and PTYPSLC are called from COBOL test programs.

The parameters to be passed to the API from the calling program are listed as follows:

• Function to perform

• Length of the Clear Text

• Clear text / pointer to clear text

• Length of the Cipher Text

• Cipher text / pointer to cipher text

• Data-element to be used

• Return-Code from API

• Reason-Code from API

• Length of the external initialization vector

• Buffer containing the external initialization vector

• Alternate user (PTYPSLC only)

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 35

5.2.2 Summary of all Parameters for PTYPSLI, PTYPSLL, and PTYPSLC

The parameters are present in the order that they need to be specified by the caller. The PTYCCSIP member of
PTYxxxx.APSAMP is a COBOL COPY section for these parameters. The names used for the parameters are the ones defined in
PTYCCSIP.

The following table describes these parameters.

Table 5-1: Parameters in PTYCCSIP

Parameter Format/PIC How to use... Remarks

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the clear text data. For encryption, this is the size of
the input buffer. For decryption,
this is the size of the output buffer
and will be set to the actual size of
the data.

Clear text clear text data Buffer for the clear text. For encryption, this is the input
buffer. For decryption, it is the
output buffer. The caller must
allocate the output buffer before
calling API.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data. For encryption, this is the size of
the output buffer. For decryption,
this is the size of the input buffer.

Encrypted text cipher text data Buffer for the encrypted data. For encryption, this is the output
buffer. For decryption, this is
the input buffer. The caller must
allocate the output buffer before
calling API.

CSI-Return-Code fullword integer / PIC 9(9) Binary Success or Failure from the API. Zero return equals success. Non-
zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the
CSI-Return Code.

The most common ones are
documented in section Return and
Reason Codes.

CSI-Function one character / PIC X This parameter defines whether
encryption or decryption should
be done.

Based on the value that is
passed to the parameter, respective
operation is triggered.

CSI-DPS-Data-Element 56 characters / PIC X(56) Policy data element name to be
used to authenticate access to the
data.

This data element name needs
to be in the same case as the
data element name was defined
in the policy, i.e., if the policy
has the data element name defined
as mixed (PTY_ivp_Test_Data)
then the value of this must be
“PTY_ivp_Test_Data”. This can
be a data item or a literal but
the literal should be 56 characters
with trailing blanks. If using
Query DDE, then this must be
a data item, as the default data
element will be returned in this
item.

CSI-External-IV-Length fullword integer / PIC 9(9) Binary Length of the external
initialization vector.

Length of the external
initialization vector. This
parameter is optional.

External-IV Text External initialization vector Buffer containing the external
initialization vector.

This is the value of external IV.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 36

Parameter Format/PIC How to use... Remarks

This parameter is optional. If
specified, then a length must also
be specified.

CSI-ALT-ID 8 characters / PIC X(8) Optional user provides an
alternate user Id to be used in lieu
of the logon user

This parameter is only used with
PTYPSLC Interface.

Note: If this is used in a
PCI standards' context, use
of alternate user ID may be
in scope for any PCI auditor
review.

Note:

For data protection, if the policy data element specifies a non-length preserving algorithm, that includes encryption with specified
key-id, then the protected data length is returned in the CSI-Cipher-Text-Length. Likewise, the unprotected data length is returned in the
CSI-Clear-Text-Length on an unprotecting operation. For protected data, the returned length should be maintained with the data so that the
data is properly unprotected. The application should also handle the data that is too short. Error can be returned with protection, when the
output buffer (CSI-Cipher-Text-Length) is too short to contain the protected value.

Note:

The external IV is ignored during encryption.

5.2.2.1 Functions performed by Stateless Interfaces

The parameters are present in the order that they need to be specified by the caller. This must be the first call to PTYPSLI,
PTYPSLL, or PTYPSLC. Ensure that the clear text values and the cipher text values are always specified in the same order in the
parameter. The function code determines whether encryption or decryption is done.

Any function that encrypts, decrypts, or queries follows the given syntax.

CALL the "Stateless Interfaces" using

• CSI-Function

• CSI-Clear-Text-Length

• WS-Clear-Text

• CSI-Cipher-Text-Length

• WS-Cipher-Text

• CSI-DPS-Data-Element

• CSI-Return-Code

• CSI-Reason-Code

• CSI-External-IV Length

• WS-EIV-Text

• ALT-ID

5.2.2.1.1 Encrypt Functions

The encrypt functions include functions supported for encryption and software encryption.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 37

The following functions are explained in this section:

• CSI-Encrypt Function

• CSI- Encrypt SFW

5.2.2.1.1.1 CSI-Encrypt Function

This function is used for encryption.

Parameters

Parameter Type/PIC Description

CSI-Function one character / PIC X Value is 1.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the clear text data or the size of the
input buffer.

Clear text clear text data Buffer for the clear text or the input buffer.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data or the size of the
output buffer.

Encrypted text cipher text data Buffer for the encrypted data or the output
buffer.

CSI-DPS-Data-Element 56 characters / PIC X(56) Policy data element name to be used for data
encryption.

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

Result

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful protection.

The variable defined for the encrypted text will have the corresponding protected data.

Parameter Type/PIC Description

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Calculated length of the encrypted text.

Clear text clear text data Encrypted text after the encryption/
tokenization.

5.2.2.1.1.2 CSI-Encrypt SFW

This function is used for software encryption. The Encrypt-SFW and Encrypt provide the same result, except for the improved
performance for CPU and clock time in case of Encrypt.

Parameters

Parameter Type/PIC Description

CSI-Function one character / PIC X Value is 2.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 38

Parameter Type/PIC Description

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the clear text data or the size of the
input buffer.

Clear text clear text data Buffer for the clear text or the input buffer.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data or the size of the
output buffer.

Encrypted text cipher text data Buffer for the encrypted data or the output
buffer.

CSI-DPS-Data-Element 56 characters / PIC X(56) Policy data element name to be used for data
encryption.

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Zero return equals success. Non-zero indicates
a failure. Additional information about the
CSI-Return Code.

Result

Parameter Type/PIC Description

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Calculated length of the encrypted text.

Encrypted text cipher text data Encrypted text after encryption/ tokenization.

5.2.2.1.2 Decrypt Functions

The decrypt functions include functions supported for decryption and software decryption.

The following functions are explained in this section:

• CSI- Decrypt Function

• CSI- Decrypt SFW

5.2.2.1.2.1 CSI-Decrypt Function

This function is used for decryption.

Parameters

Parameter Type/PIC Description

CSI-Function one character / PIC X Value is 3.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the decrypted text data or the size of
the output buffer.

Clear text clear text data Buffer for the decrypted text or the output
buffer.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data or the size of the
input buffer.

Encrypted text cipher text data Buffer for the encrypted data or the input
buffer.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 39

Parameter Type/PIC Description

CSI-DPS-Data-Element 56 characters / PIC X(56) Policy data element name to be used for data
decryption.

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

Result

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful unprotection.

The variable defined for the decrypted text will have the corresponding decrypted data.

Parameter Type/PIC Description

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Calculated length of the decrypted text.

Clear text clear text data Decrypted text after the decryption/
detokenization.

5.2.2.1.2.2 CSI-Decrypt SFW

This function is used for software decryption. The Decrypt-SFW and Decrypt provide the same result, except for the improved
performance for CPU and clock time in case of Decrypt.

Parameters

Parameter Type/PIC Description

CSI-Function one character / PIC X Value is 4.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the decrypted text data or the size of
the output buffer.

Clear text clear text data Buffer for the decrypted text or the output
buffer.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data or the size of the
input buffer.

Encrypted text cipher text data Buffer for the encrypted data or the input
buffer.

CSI-DPS-Data-Element 56 characters / PIC X(56) Policy data element name to be used for data
decryption.

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

Result

Parameter Type/PIC Description

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 40

Parameter Type/PIC Description

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Calculated length of the decrypted text.

Clear text clear text data Decrypted text after the decryption/
detokenization.

5.2.2.1.3 CSI-Query DDE

This function performs the sanity check for the protector.

The parameters are the same as for encryption or decryption calls except for the CSI-DPS-Data-Element parameter. In the Query
DDE case, the input CSI-DPS-Data-Element is the policy name. The default data element for the specified policy name will
be returned in the CSI-DPS-Data-Element field. In this case, the CSI-DPS-Data Element field must NOT be a literal and must
be a data item. If the specified policy name does not exist, you will receive a return code of 12 and a reason of 120128558
(x'0729042E').

Parameters

Parameter Type/PIC Description

CSI-Function one character / PIC X Value is 9.

CSI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the clear text data. For encryption,
this is the size of the input buffer. For
decryption, this is the size of the output buffer
and will be set to the actual size of the data.

Clear text clear text data Buffer for the clear text. For encryption, this
is the input buffer, and for decryption it is
the output buffer. The caller must allocate the
output buffer before calling API.

CSI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data. For encryption,
this is the size of the output buffer. Depending
upon the encryption algorithm, the length
could be longer than the clear text length. If
the specified length in not long enough, an
error will be returned. For decryption, this is
the size of the input buffer.

Encrypted text cipher text data Buffer for the encrypted data. For encryption,
this is the output buffer, and for decryption
this is the input buffer. The caller must
allocate the output buffer before calling API.

CSI-DPS-Data-Element 56 characters / PIC X(56) Policy name.

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

Result

Parameter Type/PIC Description

CSI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 41

Parameter Type/PIC Description

CSI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CSI-Return
Code.

CSI-DPS-Data-Element 56 characters / PIC X(56) Default Data element of the policy.

Note:

Samples to explain how PTYPSLL, PTYPSLI, or PTYPSLC can be called from COBOL to perform various functions, are mentioned in
section Appendix E- z/OS Application Protector Samples.

5.2.3 Return and Reason Codes

This section lists the Cryptographic Service Interface (CSI) return codes and reason codes.

The Cryptographic Service Interface (CSI) return codes and reason codes have a 4 bytes binary format. Some errors may include
a PTY105E message with more information.

Note: The CSI may ABEND if the return code and reason code parameters cannot be accessed.

The following table describes the return and reason codes:

Error Return Code Dec. Reason Code Dec.

Access denied X'00000004' 4 X'00000006' 6

Access denied - Unknown
user

X'00000004' 4 X'00000001' 1

Access denied - Unknown
data element

X'00000004' 4 X'00000002' 2

Access denied - User has
no privileges for data
element

X'00000004' 4 X'00000003' 3

Access denied - User has
no privileges for data
element for the current
time period

X'00000004' 4 X'00000004' 4

ALT-ID value is mentioned
without externalIV
parameters

X'0000 0008' 8 x'50000000' 1342177280

Login user is in the role
and ALT-ID is empty

x'08000000' 8 x'51000000' 1358954496

Function address null X'0000000C' 12 X'0000000A' 10

Clear text length address
null

X'0000000C' 12 X'0000000B' 11

Clear text address null X'0000000C' 12 X'0000000C' 12

Cipher text length address
null

X'0000000C' 12 X'0000000D' 13

Cipher text address null X'0000000C' 12 X'0000000E' 14

Data element address null X'0000000C' 12 X'0000000F' 15

Data Protector not active X'0000000C' 12 X'00000011' 17

Data Protector not active X'0000000C' 12 X'00000017' 23

Product not active X’0000000C’ 12 X’0000001E’ 30

Invalid function code X’0000000C’ 12 X’00000010’ 16

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 42

Error Return Code Dec. Reason Code Dec.

Policy not ready X’0000000C’ 12 X’0000001F’ 31

Plain text length zero X’0000000C’ 12 X’00000029’ 41

Clear text length zero X’0000000C’ 12 X’00000029’ 41

Cipher text length zero X’0000000C’ 12 X’0000002A’ 42

Cipher text length less than
plain text length

X’0000000C’ 12 X’0000002B’ 43

Cipher text length less than
clear text length

X’0000000C’ 12 X’0000002B’ 43

Query null data element X’0000000C’ 12 X’0000002D’ 45

Invalid checksum X’0000000C’ 12 X’0000002F’ 47

Invalid padding X’0000000C’ 12 X’00000030’ 48

Invalid IV X’0000000C’ 12 X’00000031’ 49

Cipher text area too small X’0000000C’ 12 X’00000032’ 50

Plain text area too small X’0000000C’ 12 X’00000033’ 51

Checksum validation
failure

X’0000000C’ 12 X’00000034’ 52

Unsupported algorithm X’0000000C’ 12 X’00000058’ 88

Unknown algorithm X’0000000C’ 12 X’0000005D’ 93

Default data element not
supported

X’0000000C’ 12 X’0000005E’ 94

Abend percolated X’0000000C’ 12 X’000000FB’ 251

Peps policy locked X’0000000C’ 12 X'072C0000' 120324096

Note: Some errors will also include a PTY105E message that has more information about the issue.

CSI may ABEND if the return code and reason code parameters cannot be accessed.

Error User Abend Code

Parmlist address null 001

Return code address null 002

Reason code address null 003

Return code parameter omitted 005

Reason code parameter omitted 006

5.3 Stateful Interfaces: PTYPCXI and PTYPCXL
The Interface modules PTYPCXI and PTYPCXL are recommended Stateful Interfaces.

The Interface modules PTYPCXI and PTYPCXL are stateful. This means that they maintain information from previous calls to
allow simplifying future processing. This also means that unlike the stateless interfaces, there are multiple function calls to use
PTYPCXI or PTYPCXL.

5.3.1 COBOL Prameters to call Stateful Interfaces

The PTYPCXI and PTYPCXL are called from COBOL test programs.

The parameters to be passed to the API from the calling program are listed as follows:

• Function to perform

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 43

• Length of the Clear Text

• Clear text / pointer to clear text

• Length of the Cipher Text

• Cipher text / pointer to cipher text

• Data-element to be used

• Return-Code from API

• Reason-Code from API

• Length of the external initialization vector

• Buffer containing the external initialization vector

5.3.2 Summary of all Parameters for PTYPCXI and PTYCXL

This section discusses about the summary of all parameters for PTYPCXI and PTYCXL.

There are three calls to PTYPCXI and PTYCXL. These calls are specified via the CXI-Function. The parameters are different
for each call. The parameters are present in the order that they need to be specified by the caller. The PTYCCXIP member of
PTYxxxx.APSAMP is a COBOL COPY section for these parameters. The names used for the parameters are the ones defined in
PTYCCXIP.

Connect and disconnect are pairs. A connect call is followed by one or more encrypt or decrypt calls with a disconnect call at the
end of the logic.

Table 5-2: Parameters in PTYCCXIP

Parameter Type Description

CXI-Function one character Value is 1 for encrypt and value is 3 for
decrypt.

CXI-Handle 8 characters (PIC X(8) for COBOL) Value is returned by the connect call and
must be passed ASIS on each subsequent
encrypt, decrypt or disconnect call. The
calling program should NOT change this
value.

CXI-Clear-Text-Length fullword integer Length of the clear text data. For decryption,
this is the size of the output buffer and will
be set to the actual size of the data. For
encryption, this is the size of the input buffer.

Clear text clear text data Buffer for the clear text. For encryption, this
is the input buffer, and for decryption it is
the output buffer. The caller must allocate the
output buffer before calling PTYPCXI. Also,
refer to the section Current Data Element Key
ID Query Configuration.

CXI-Cipher-Text-Length fullword integer Length of the encrypted data. For encryption,
this is the size of the output buffer. Depending
upon the encryption algorithm, the length may
need to be longer than the clear text length. If
the specified length in not long enough, then
an error will be returned. For decryption, this
is the size of the input buffer.

Encrypted text cipher text data Buffer for the encrypted data. For encryption,
this is the output buffer, and for decryption
this is the input buffer. The caller must
allocate the output buffer before calling
PTYPCSI. Also, refer to the section Current
Data Element Key ID Query Configuration.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 44

Parameter Type Description

CXI-Return-Code fullword integer Zero return equals success. Non-zero indicates
a failure and the reason code will have more
information.

CXI-Reason-Code fullword integer The most common ones are documented in the
section Return and Reason Codes.

CXI-External-IV-Length fullword integer Length of the external initialization vector.
This parameter is optional.

External-IV Text External initialization vector This is the value of external IV.

This parameter is optional. If specified, then a
length must also be specified.

Note:

For data protection, if the policy data element specifies a non-length preserving algorithm, that includes encryption with specified
key-id, then the protected data length is returned in the CXI-Cipher-Text-Length. Likewise, the unprotected data length is returned in the
CXI-Clear-Text-Length on an unprotecting operation. For protected data, the returned length should be maintained with the data so that the
data is properly unprotected. The application should also handle the data that is too short. Error can be returned with protection, when the
output buffer (CXI-Cipher-Text-Length) is too short to contain the protected value.

Note:

The external IV is ignored during encryption.

5.3.2.1 Functions performed by Stateful Interfaces

This section demonstrates the functions performed by PTYPCXI or PTYPCXL.

The following are the functions:

• Connect Configuration

• Encrypt Configuration

• Decrypt Configuration

• Disconnect Configuration

• Default Data Element (DDE) Configuration

• Current Data Element Key ID Query Configuration

5.3.2.1.1 Connect Configuration

This function is used for connect configuration.

The parameters are present in the order that they need to be specified by the caller. This must be the first call to PTYPCXI or
PTYPCXL. The following table describes the connect parameters,

Parameters

Parameter Type/PIC Description

CXI-Function one character Value is 7.

CXI-Handle 8 characters (PIC X(8) for COBOL) Value is returned by the connect call and must
be passed on each subsequent encrypt, decrypt
or disconnect call. The calling program should
NOT change this value.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 45

Parameter Type/PIC Description

CXI-DPS-Data-Element 56 characters Policy data element name to use to
authenticate access to the data. This needs to
be in the same case as the data element name
was defined in the policy, i.e., if the policy
has the data element name defined as mixed
(PTY_ivp_Test_Data) then the value of this
must be “PTY_ivp_Test_Data”. This can be a
data item or a literal but the literal should be
56 characters with trailing blanks.

Result

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful protection.

The variable defined for the encrypted text will have the corresponding protected data.

Parameter Type/PIC Description

CXI-Return-Code fullword integer Zero return equals success. Non-zero indicates
a failure and the reason code will have more
information.

CXI-Reason-Code fullword integer The most common ones are documented in the
section Return and Reason Codes.

5.3.2.1.2 Encrypt Configuration

This function is used for encryption.

The parameters are present in the order that they need to be specified by the caller. This must be the first call to PTYPCXI or
PTYPCXL.

Parameters

Parameter Type/PIC Description

CXI-Function one character Value is 1.

CXI-Handle 8 characters (PIC X(8) for COBOL) Value is returned by the connect call and
must be passed ASIS on each subsequent
encrypt, decrypt or disconnect call. The
calling program should NOT change this
value.

CXI-Clear-Text-Length fullword integer Length of the clear text data. For encryption,
this is the size of the input buffer.

Clear text clear text data Buffer for the clear text. For encryption, this
is the input buffer. The caller must allocate the
output buffer before calling PTYPCXI. Also,
refer to section Current Data Element Key ID
Query Configuration.

CXI-External-IV-Length fullword integer Length of the external initialization vector.
This parameter is optional.

External-IV Text External initialization vector This is the value of external IV.

This parameter is optional. If specified, then a
length must also be specified.

Result

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 46

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful protection.

The variable defined for the encrypted text will have the corresponding protected data.

Parameter Type/PIC Description

CXI-Return-Code fullword integer Zero return equals success. Non-zero indicates
a failure and the reason code will have more
information.

CXI-Reason-Code fullword integer The most common ones are documented in the
section Return and Reason Codes.

CXI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Calculated length of the encrypted text.

Encrypted text cipher text data Encrypted text after encryption/ tokenization.

5.3.2.1.3 Decrypt Configuration

This function is used for decryption.

The parameters are present in the order that they need to be specified by the caller. This must be the first call to PTYPCXI or
PTYPCXL.

Parameters

Parameter Type/PIC Description

CXI-Function one character Value is 3.

CXI-Handle 8 characters (PIC X(8) for COBOL) Value is returned by the connect call and
must be passed ASIS on each subsequent
encrypt, decrypt or disconnect call. The
calling program should NOT change this
value.

CXI-Cipher-Text-Length fullword integer Length of the encrypted data. For decryption,
this is the size of the input buffer. Depending
upon the encryption algorithm, the length may
need to be longer than the clear text length. If
the specified length in not long enough, then
an error will be returned.

Encrypted text cipher text data Buffer for the encrypted data. For decryption,
this is the input buffer. The caller must
allocate the output buffer before calling
PTYPCSI. Also, refer to section Current Data
Element Key ID Query Configuration.

CXI-External-IV-Length fullword integer Length of the external initialization vector.
This parameter is optional.

External-IV Text External initialization vector This is the value of external IV.

This parameter is optional. If specified, then a
length must also be specified.

Result

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful protection.

The variable defined for the decrypted text will have the corresponding protected data.

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 47

Parameter Type/PIC Description

CXI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CXI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CXI-Return
Code.

CXI-Clear-Text-Length fullword integer / PIC 9(9) Binary Calculated length of the decrypted text.

Clear text clear text data Decrypted text after the decryption/
detokenization.

5.3.2.1.4 Disconnect Configuration

This function is used for disconnect configuration.

The parameters are present in the order that they need to be specified by the caller. This must be the first call to PTYPCXI or
PTYPCXL.

The following table describes the disconnect codes.

Parameters

Parameter Type/PIC Description

CXI-Function one character Value is 8 for disconnect.

CXI-Handle 8 characters (PIC X(8) for COBOL) Value is returned by the connect call and must
be passed on each subsequent encrypt, decrypt
or disconnect call. The calling program should
NOT change this value. Disconnect will zero
the value.

Result

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful protection.

The variable defined for the encrypted text will have the corresponding protected data.

Parameter Type/PIC Description

CXI-Return-Code fullword integer Zero return equals success. Non-zero indicates
a failure and the reason code will have more
information.

CXI-Reason-Code fullword integer The most common ones are documented in the
section Return and Reason Codes.

Caution: If the DISCONNECT function is not called while using PTYPCXI or PTYPCXL, then successful audit logs will not be
generated, and unsuccessful logs will still be generated.

5.3.2.1.5 Default Data Element (DDE) Configuration

This function performs the sanity check for the protector.

The parameters are the same as for encryption or decryption calls except for the CXI-DPS-Data- Element parameter. In the Query
DDE case, the input CXI-DPS-Data-Element is the policy name. The default data element for the specified policy name will
be returned in the CXI-DPS-Data-Element field. In this case, the CXI-DPS-Data Element field must NOT be a literal and must
be a data item. If the specified policy name does not exist, you will receive a return code of 12 and a reason of 120128558
(x'0729042E').

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 48

Parameters

Parameter Type/PIC Description

CXI-Function one character / PIC X Value is 9.

CXI-Clear-Text-Length fullword integer / PIC 9(9) Binary Length of the clear text data.

For encryption, this is the size of the input
buffer, whereas, for decryption, this is the size
of the output buffer and will be set to the
actual size of the data.

Clear text clear text data Buffer for the clear text.

For encryption, this is the input buffer,
whereas, for decryption it is the output buffer.
The caller must allocate the output buffer
before calling API.

CXI-Cipher-Text-Length fullword integer / PIC 9(9) Binary Length of the encrypted data.

For encryption, this is the size of the
output buffer. Depending upon the encryption
algorithm, the length could be longer than the
clear text length. If the specified length in not
long enough, an error will be returned.

For decryption, this is the size of the input
buffer.

Encrypted text cipher text data Buffer for the encrypted data.

For encryption, this is the output buffer,
whereas, for decryption this is the input buffer.
The caller must allocate the output buffer
before calling API.

CXI-DPS-Data-Element 56 characters / PIC X(56) Policy name

CXI-Return-Code fullword integer / PIC 9(9) Binary Zero return equals success.

Non-zero indicates a failure.

CXI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CXI-Return
Code.

Result

The Return code and Reason Code will be returned after the call, signifying the successful or unsuccessful operation.

The variable defined for the encrypted text will have the corresponding protected data.

Parameter Type/PIC Description

CXI-Return-Code fullword integer / PIC 9(9) Binary Zero equals success.

Non-zero indicates a failure

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 49

Parameter Type/PIC Description

CXI-Reason-Code fullword integer / PIC 9(9) Binary Additional information about the CXI-Return
Code.

CXI-DPS-Data-Element 56 characters / PIC X(56) Default Data element of the policy.

Note:

Samples to explain how PTYPCXI and PTYPCXL can be called from COBOL to perform various functions, are mentioned in section
Appendix E- z/OS Application Protector Samples.

5.3.2.1.6 Current Data Element Key ID Query Configuration

This section discusses about Current Data Element Key ID Query configuration.

PTYPCXI and PTYPCXL require no specific field for Key ID purposes. If the encrypted data length is not large enough to hold
the encrypted field including any padding, Key ID, checksum, or initialization vector, then a Cipher text length too short error
will be returned.

Note:

Samples to explain how PTYPCXL/PTYPCXI can be called from COBOL to perform various functions, are mentioned in the section
Appendix E- z/OS Application Protector Samples.

5.3.3 Return and Reason Codes

This section lists the CXI return codes and reason codes.

The CXI return codes and reason codes are 4 bytes binary format. Many of these can also be returned for the stateless interfaces.
Some errors may include a PTY105E message with more information.

Error Return Code Dec. Reason Code Dec.

Incorrect data element X’00000004’ 4 X’00000002’ 2

Access denied X'00000004' 4 X'00000006' 6

Invalid input type for token X'00000004' 4 X’000A0000’ 655360

Cipher text length zero X'0000 0008' 8 X’24000000’ 603979776

Cipher text length too
small

X'0000 000C' 12 X’07000032’ 117440562

Function address null X'0000 000C' 12 X'0000000A' 10

Clear text length address
null

X'0000 000C' 12 X'0000000B' 11

Clear text address null X'0000000C' 12 X'0000000C' 12

Cipher text length address
null

X'0000000C' 12 X'0000000D' 13

Cipher text address null X'0000000C' 12 X'0000000E' 14

Data element address null X'0000000C' 12 X'0000000F' 15

Data Protector not active X'0000000C' 12 X'00000011' 17

Data Protector not active X'0000000C' 12 X'17000000' 385875968

Product not active X’0000000C’ 12 X’0000001E’ 30

Clear text length zero X’0000000C’ 12 X’23000000’ 587202560

Peps policy locked X’0000000C’ 12 X'072C0000' 120324096

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 50

Error Return Code Dec. Reason Code Dec.

Policy not found X’0000000C’ 12 X'0729042E' 120128558

Out of address spaces X’0000000C’ 12 X'150C0000' 353107968

Cipher text length too short X’0000000C’ 12 X’07320000’ 120717312

Algorithm not supported X’0000000C’ 12 X’07000058’ 117440600

Cipher text length too
small

X’0000000C’ 12 X’07000032’ 117440562

CSI may ABEND if the return code and reason code parameters cannot be accessed.

Error User Abend Code

Parmlist address null 001

Incorrect function code 002

Reason code address null 006

Return code address null 005

Codebooks size is larger than the allocated shared memory size 2449(X'0991')

Protegrity z/OS Protector Guide 7.0.1 Application Protector on Mainframe z/OS

Confidential 51

Chapter 6
File Protector Solutions on Mainframe z/OS

6.1 Installing and Customizing File Protector on z/OS

6.2 Cryptographic File Utility for z/OS

6.3 Cryptographic Subsystem for z/OS

6.4 CSS and CFU Comparative Properties

Protegrity provides two File Protector solutions for Mainframe z/OS platform: Cryptographic File Utility (CFU) and Cryptographic
Subsystem (CSS). The installation and operation of these products are explained in the following sections.

Both Cryptographic File Utility (CFU) and Cryptographic Subsystem (CSS) require the Protegrity Cryptographic Servers, the
installation of which is described in the section z/OS Product Installation. Both the products work only with sequential non-VSAM
files.

The Cryptographic File Utility (CFU) is a program similar in concept to IEBGENER (IBM mainframe utility) that inputs a file and
copies the complete file to another file making the changes determined from the control records. These changes could be partial,
complete encryption, or tokenization. CFU needs an unprotected file as a part of the protection process. This is an advantage in
multiple job steps when there is a need to process the unprotected file prior to the final processing by reducing protection and
unprotection costs.

The Cryptographic Subsystem (CSS) takes more installation effort since it requires an MVS subsystem to be defined. CSS does not
require any intermediate unprotected files. It unprotects the protected file during input I/O processing and protects the output data
during the I/O output processing.

Note: Protegrity does not use the IBM software product, z/OS Integrated Cryptographic Service Facility or ICSF (including their encryption and
decryption methods). It may use some of the ICSF hardware, but does so with Protegrity’s own methods.

6.1 Installing and Customizing File Protector on z/OS
The following section explains the installation of File Protector solutions on Mainframe z/OS. It provides a high-level setup
overview as well as post-installation verification steps.

The following sections describe about setting up File Protector on z/OS:

• Setting up File Protector on Mainframe z/OS

• Installing and Customizing SIAM Subsystem

6.1.1 Setting up File Protector on Mainframe z/OS

These steps explain in high level how to setup File Protector and install CFU and CSS on Mainframe z/OS.

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 52

To install File Protector on Mainframe z/OS:

1. Install the PEP server. For more information about installing the PEP server, refer to the section Installing the PEP Server.

2. Install the Protegrity Cryptographic Services. For more information about installing the Cryptographic Services, refer to the
section Installing the Cryptographic Server.

3. Install CSS, CFU, or both Interfaces as explained below.

a. The PTYxxxx.FPAUTH, PTYxxxx.FPLOAD, and PTYxxxx.FPSAMP files are restored using LODxxxF.jcl.

Library Name Description

PTYxxxx.FPAUTH This is a standard load library that contains the executable for the MVS subsystem, which is
required for the Cryptographic Sub-System.

This executable may be left in this library and this library can be added to the LINKLIST
and the authorized library as documented below. You can also copy the executable into the
PTYxxxx.SPTYAUTH library that is installed as part of the Protegrity cryptographic servers’
installation.

PTYxxxx.FPLOAD This is a standard load library that contains the executables for CFU and CSS.

PTYxxxx.FPSAMP This is a RECFM F LRECL 80 JCL type library, containing the sample data and JCLs to test
CFU and CSS.

4. Activate Protegrity Data Security Platform. For more information about activating the Protegrity Data Security Platform,
refer to the section Activating Protegrity Data Security Platform.

5. Deploy a test policy. For more information about deploying a test policy, refer to the section Deploying a Test Policy.

6. Verify the PEP server installation. For more information about verifying the installation of the PEP server, refer to the section
Verifying the Installation.

6.1.2 Installing and Customizing SIAM Subsystem

This section outlines how to install and customize the Protegrity CSS for z/OS.

The following sections describe about installing and customizing SIAM Subsystem:

• Installing Dynamic CSS

• Installing Permanent CSS

• Controlling Access to CSS

6.1.2.1 Installing Dynamic CSS

To dynamically install a new MVS subsystem, load the initialization module from an existing link listed library. It is suggested
that you only use the dynamic method of CSS installation for testing. Any changes done with this method are lost at the next
Initial Program Load (IPL) of z/OS.

To dynamically install the CSS SSI:

1. Copy all modules in FPAUTH to an existing link-listed authorized library.

For example, USER.LINKLIB and PTYxxxx.SPTYAUTH, among others.

2. Refresh the library lookaside (LLA), issue F LLA, REFRESH on system console.

3. Dynamically add the CSS initialization module to the LPA with the following MVS command:

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 53

SETPROG LPA,ADD,DSNAME=USER.LINKLIB,MODULE=(SIAMINIT,SIAMOPCL,PTYPAMLT,PTYPAMEX)

4. Dynamically add the new subsystem with the following command:

SETSSI ADD,SUB=SIAM,I=SIAMINIT

The message SIA000I OK appears on the system console and the CSS is ready to be used.

6.1.2.2 Installing Permanent CSS

You must IPL the MVS system. First, you need to make the following changes to SYS1.PARMLIB:

To install the CSS SSI permanently:

1. Add PTYxxxx.FPAUTH to your current PROGxx member.

2. Add PTYxxxx.FPAUTH to your current linklist either in your PROGxx or LNKLSTxx member.

3. Add to existing or new IEALPAxx member.

INCLUDE LIBRARY(PTYxxxx.FPAUTH)MODULES(SIAMINIT,SIAMOPCL,PTYPAMLT,PTYPAMEX)

4. Add the subsystem to your current IEFSSNxx member.

SUBSYS SUBNAME(SIAM) INITRTN(SIAMINIT) /* SIAM SUBSYSTEM */

5. Perform an IPL of the system to finally install the SSI.

Note: If you previously installed the SSI dynamically, then you added the FPAUTH modules to an existing link-listed data set. After
the SSI is installed permanently, you should remove these modules from this data set.

6.1.2.3 Controlling Access to CSS

Controlling access to CSS is required only if you plan to use CSS along with MVS authorized programs, such as IDCAMS and
DB2 utility.

As part of dataset OPEN process, the SIAM subsystem issues RACHECK macro for the following profiles in FACILITY class
SIAM.jsprognm.amprognm.amddname. The components are as explained below:

• jsprognm – job step program name

• amprognm – trusted program name allowed to execute under SIAM subsystem

• amddname – DD name where SUBSYS parameter specified

User must have READ authority for the preceding profile to allow them to execute amprognm under SIAM subsystem. If profile
does not exist, then further processing is allowed only under non-APF authorized job step. The following code is an example of
JCL for defining profiles for IDCAMS and DB2 utility.

//* INSERT JOBCARD
//*
//* THIS BATCH JOB DEFINES THE RACF PROFILES TO PROTECT
//* SIAM SUBSYSTEM USAGE
//*
//* VERIFY OR CHANGE THE FOLLOWING BEFORE RUNNING THE JOB:
//*
//* PROFILE OWNER : SYS1
//* AUTH USER/GROUP : PTY
//*
//*
//IKJEFT01 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RDEFINE FACILITY SIAM.DSNUTILB.PTYPAMLT.SYSREC +

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 54

 UACC(NONE) OWNER(SYS1) DATA('DB2 UTILITY')
 RDEFINE FACILITY SIAM.IDCAMS.PTYPAMLT.* +
 UACC(NONE) OWNER(SYS1) DATA('AMS UTILITY')
 PERMIT SIAM.DSNUTILB.PTYPAMLT.SYSREC +
 CLASS(FACILITY) ID(PTY) ACCESS(READ)
 PERMIT SIAM.IDCAMS.PTYPAMLT.* +
 CLASS(FACILITY) ID(PTY) ACCESS(READ)
 SETROPTS RACLIST(FACILITY) REFRESH
/*
//

Note: The following steps describe how to allow access to SIAM subsystem using the Access Control Facility ACF2 (CA-ACF2)
command:

1. Navigate to the ACF2 ISPF dialog.

2. Select the option 1.2.

3. Run the following command:

$KEY(SIAM) TYPE(FAC) ROLESET

- ROLE(-) ALLOW

4. Press the PF3 key to compile and save the rule.

5. Run the following command to rebuild the FAC in memory Infostorage rules.

F ACF2, REBUILD(FAC)

6.2 Cryptographic File Utility for z/OS
Cryptographic File Utility for z/OS is a utility for protecting and unprotecting data stored in sequential non-VSAM files.

Cryptographic File Utility for z/OS uses standard z/OS data management methods to read and write the data. The utility can be
used with files written to disk or tape, and can read or write UNIX System Services files. No programs need to be written or
modified to use this functionality. JCL, CLISTs, or REXX EXECs can be used to invoke the utility.

The input file can be partially protected or unprotected by specifying a starting record number and a record count for how many
records are to be protected or unprotected. If DCB attributes (logical record length, block size, record format, and so on) are not
specified for the output file, then the input DCB attributes are copied to the output file.

6.2.1 Executing Protegrity Cryptographic File Utility

The Cryptographic File Utility protects or unprotects non-VSAM sequential files. It uses standard z/OS file services and
Protegrity cryptographic services to do protect or unprotect. Standard data definition statements point to the input file and where
to place the output file. A parameter file describes whether to protect or unprotect, which record to start with, and how many
records to work with.

The following sections describe about executing Protegrity Cryptographic File Utility:

• Parameter File

• Input File Specifications

• Output File Specifications

6.2.1.1 Parameter File

The parameter file is a standard sequential file that is pointed to by DDNAME PTYPARM. It may be provided inline with the
invocation JCL or it may be provided as a member of a partitioned dataset.

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 55

The following table describes the valid parameters. Any record within the parameter file that starts with an asterisk (*) is a
comment and is ignored. Blanks are not allowed to be embedded within the parameters.

Table 6-1: Parameters for the Parameter File

Parameter Description

ENCRYPT=policy data element name Either ENCRYPT or DECRYPT must be specified. Even though
ENCRPYPT and DECRYPT are used as keywords, tokens may also
be used.

DECRYPT=policy data element name Either ENCRYPT or DECRYPT must be specified.

RSTART=n Optional parameter, that specifies the record from where the
encryption or decryption should begin. The first record is record 1.
If no RSTART is specified, then all records in the file are encrypted
or decrypted. The value of n must be a positive integer. The number
can be larger than the number of records in the file, and if so, then
the input file is just copied to the output file. If RSTART is specified
and RCOUNT is not specified, then the remainder of the input file is
ciphered as specified by ENCRYPT or DECRYPT.

RCOUNT=n Optional parameter that specifies the number of records to cipher.
The default is to cipher the entire file. The value of n must be a
positive integer and is inclusive. So RSTART=25 and RCOUNT=10
then records 25 through 34 are ciphered.

PAD=SPACES/NULLS This parameter is only valid for CUSP algorithms. It is ignored for
tokens and non-CUSP encryption algorithms. The output record is
padded with the designated character. For encrypting, the padding is
added before encryption. For decrypting, the padding is added after
the input data is decrypted. If the input and output LRECLs are equal,
then no padding is done. If not specified, then NULLs (binary zero)
are added when the output record is longer than the input record.

CSTART=n* Optional parameter that specifies the column to start the encryption
or decryption. The first column is column 1. If no CSTART is
specified, then the entire record is encrypted or decrypted. If CSTART
is specified and CCOUNT is not specified, then the remainder of the
record is encrypted or decrypted. The value of n must be a positive
integer.

CCOUNT=n* Optional parameter that specifies the number of columns to cipher. If
the record is shorter than CSTART+CCOUNT, then the balance of the
record after CSTART is ciphered. The value of n must be a positive
integer.

COMPAT=4 Optional parameter that is a migration aid. Protegrity versions prior
to 5.1 always specified that padding should be applied when data
elements were created. This padding increased the length of the
encrypted data by up to 16 characters. The z/OS products did not use
this padding setting and instead used an encryption algorithm called
CUSP that did not increase the size of the encrypted data. In addition,
the z/OS products did not honor the Checksum and IV settings of the
data element. With the capability of specifying the CUSP algorithms
in the version 5.1 ESA, the z/OS products were enhanced to honor
the padding, Checksum, or IV settings. To decrypt data encrypted by
prior versions, it is IMPERATIVE to specify COMPAT=4. If you do
not specify COMPAT=4, then decryption does not work, resulting in
error codes. If you want the ciphering behavior for version 5.1 to be
the same as in versions prior to 5.1, then you can also specify this.
However, if you do not want the encrypted data to be larger than the
clear text data, you should select CUSP methods when you define data
elements. This is particularly true when the encrypted data may go
into a PDS or fixed length PDSE.

EXTERNALIV=startcolumn Specifies the starting column for the external InitializationValue to be
used. If not specified, then no external IV is used.

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 56

Parameter Description

Startcolumn must be a positive numeric.

EIVCOUNT=numberofcolumns Specifies how many columns should be included in the external IV. If
EXTERNALIV is not specified, then do not specify this value. There
is no default value and this value must be specified if EXTERNALIV
is used. Numberofcolumns must be a positive numeric value.

Note: Decimal tokens are not supported since the File Protector does not return the required value when the data is detokenized.

* Non-length preserving tokens are not supported with CFU.

* Only CUSP algorithms and length-preserving tokens are valid for CSTART and CCOUNT parameters. Any other algorithm, including
CUSP with KeyID or CRC, has the potential to increase the size of the protected data and would exceed the size chosen to be protected.

For more details on CUSP algorithms, refer to the section CUSP in the Protection Methods Reference Guide 9.2.0.0.

Note: While using externalIV, consider the following factors:

• Specify CSTART and CCOUNT along with EXTERNALIV and EIVCOUNT parameters

• EXTERNALIV value should not be in the range of column value specified in CSTART and CCOUNT

• Protection of the full file using EXTERNALIV is not possible.

• The external IV is ignored during encryption

6.2.1.2 Input File Specifications

This section mentions about the input file specifications.

These are the specifications for the input file:

• The input file is pointed to DDNAME with PTYUT1.

• It must be a standard z/OS sequential file and may be a UNIX System Services (USS) file.

• The sequential file may be a member of a partitioned data set.

Note: For USS files, z/OS does not maintain logical record lengths, so the LRECL or the BLKSIZE needs to be specified through JCL
to allow the buffers to be the proper size to handle the longest record in the file. Tokens are not supported while performing protect or
unprotect operations on USS files.

6.2.1.3 Output File Specifications

This section mentions about the input file specifications.

These are the specifications for the output file:

• The output file is pointed to DDNAME with PTYUT2.

• It must be a standard z/OS sequential file and may be a UNIX System Services (USS) file.

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 57

• The sequential file may be a member of a partitioned data set. If it is, then an ISPF style ENQ is done on the member name
and the dataset name to get exclusive access to the member.

Note: For USS files, z/OS does not maintain logical record lengths so the LRECL or the BLKSIZE needs to be specified through JCL to
allow the buffers to be the proper size to handle the longest record in the file.

Note: If the RECFM, LRECL, and/or BLKSIZE are not specified, then these are copied from the input file specifications.

6.3 Cryptographic Subsystem for z/OS
Cryptographic Subsystem for z/OS is a complex solution for protecting and unprotecting of QSAM/BSAM supported datasets.

Cryptographic Subsystem for z/OS consists of two main components, which are Subsystem Interface Access Method (SIAM) and
Protegrity Crypto Access Method working as plugins to SIAM Subsystem (PTYPAMLT and PTYPAMEX modules) and these
handle the actual file protection. PTYPAMLT module supports only length-preserving encryption algorithms, such as CUSP and
length preserving tokens.

The SIAM subsystem intercepts QSAM or BSAM calls in your application programs using an MVS subsystem interface (SSI).
The SSI can be installed dynamically or permanently. If installed permanently, then you must start IPL to complete the SSI
installation. Updates to your SYS1.PARMLIB data set are required to install the subsystem permanently.

After installing the subsystem, whether dynamically or permanently, not all QSAM/BSAM requests are intercepted and
processed by CSS. This only occurs when the required JCL changes are made.

Protegrity z/OS Cryptographic Access Method has the following characteristics:

• QSAM and BSAM access methods are supported.

• Supported AM macros are GET, PUT, READ, and WRITE.

• Fixed, variable, and undefined length record formats.

• Implemented as modules for Protegrity z/OS SIAM Subsystem.

• SUBSYS parameter of the DD statement requests encryption or decryption.

• Up to 16 fields can be encrypted with the same or different data elements. The field can be the whole record.

• Existing Protegrity z/OS infrastructure utilized.

• Only JCL changes are required and no changes are needed for the application code.

6.3.1 CSS Subsystem Usage

This section describes about CSS Subsystem usage.

To allow CSS to encrypt or decrypt data, you need to change the JCL DD statement for the required dataset. To allow QSAM/
BSAM calls to be intercepted by CSS, update the DD statement for dataset as follows:

Before:

//APPDATA DD DSN=APP.DATA, DISP=SHR

After:

//APPDATA DD SUBSYS=(SIAM,module-name[,dd-name][,D1][,C1][,L1] …),
 DCB=(APP.DATA.ENCRYPTD[,BUFNO=1])
//APPDATA@ DD DSN=APP.DATA.ENCRYPTD,DISP=...

The following table explains the parameter values for the SUBSYS parameters.

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 58

Table 6-2: Parameter values for the SUBSYS parameters

Parameter Description

1st parameter, module name Module name which processes the QSAM or BSAM calls. Protegrity
supplies PTYPAMLT and PTYPAMEX.

2nd parameter, optional DD-name for encrypted file.

For more information, refer to Point 1 in the Note mentioned below.

Dx, optional Data element name for record field. Up to 16 fields can be defined.

Cx, optional Field start column.

Lx, optional Field length.

Note:

• If dd-name is omitted, then the default DD name is generated by adding “@” to the end of SUBSYS DD name, or by replacing the first
character of SUBSYS DD name to “@” if it is 8 bytes long.

• If Dx is omitted, then the last one specified remains in effect.

• If Cx is omitted, then it defaults to the next byte after the previous field definition, or to one for the first field.

• If Lx is omitted, then it defaults to the remainder of record.

• You need to specify Cx in ascending order and avoid fields overlapping.

• If none of the fields are specified, then copy operation takes place.

• PTYPAMEX ignores columns specification for input (during decrypt processing) and retrieves it directly from the encrypted file.

• You may choose to execute a partial decrypt with PTYPAMLT by specifying other columns in the input.

• You may choose to permanently store definitions of various columns in the library and INCLUDE them into JCL, as below:

//LAYOUTS JCLLIB=(....)
// INCLUDE L1
…
//INPUT DD SUBSYS=(SIAM,PTYMAMLT,FILEDD,&L1)
//FILEDD DD DSN=...
where L1 member contains // SET L1='AES128C,1,16,,32,12' for example.

• Neither RECFM=VS or RECFM=VBS dataset is supported for input.

• There is no default DCB information for the SUBSYS dataset.

• Using CSS for decryption requires DCB parameters specified for the input file (encryption file) SUBSYS DD name. This may be
coded explicitly or referenced to the existing input file (encryption file) as shown in the following examples:

//APPDATA DD SUBSYS=(SIAM,PTYPAMLT,DATAOUT,&FIELD1.&FIELD2),
// DCB=&PTYHLQ..FILEAMLT.DATA.RECFMF.ENC
//DATAOUT DD DISP=SHR,DSN=&PTYHLQ..FILEAMLT.DATA.RECFMF.ENC

OR

//APPDATA DD SUBSYS=(SIAM,PTYPAMLT,,&FIELD1.&FIELD2),
// DCB=&PTYHLQ..FILEAMLT.DATA.RECFMF.ENC
//APPDATA@ DD DISP=SHR,DSN=&PTYHLQ..FILEAMLT.DATA.RECFMF.ENC

The DCB parameters in the output file (decryption file) DD name is optional.

Therefore, if the application program does not provide such defaults, then RECFM, LRECL, or BLKSIZE should be given from
the SUBSYS DD. These may be coded explicitly or obtained by the system when DCB sub-parameter refers to the existing
dataset. For example, DCB=MODEL.DATASET.NAME. BUFNO=1 is recommended instead of default 5 since there is no actual
I/O for the SUBSYS dataset.

By default, the following parameters are copied from the application DCB to the DCB for a file at SUBSYS DCB OPEN time by
the PTYPAMLT:

• RECFM - all record formats

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 59

• LRECL - F/V records

• BLKSIZE - U records

This allows for MVS to choose BLKSIZE automatically for a new output dataset or process input BLKSIZE other than what the
application program expects for the F/V records.

If you specify DCB=INTVL=1 in the DD statement for a file, then BLKSIZE is also copied from application DCB (of course, it
is either specified by application program, or inherited from SUBSYS DD). PTYPAMEX uses its own format of encrypted file.
You can view a CSS sample code in the section JCL Sample Code for Using CSS.

6.4 CSS and CFU Comparative Properties
This section gives suggestions and comparative information about CSS and CFU. The scenarios where CSS or CFU might be
used are also explained. The advantages of using PTYPAMEX for CSS and PTYPAMLT for CSS are covered in this section.

CFU is a file utility that takes an input file and manipulates it to create an output file. The entire file is processed. You can specify
what data records and what columns within those records to manipulate; however, the entire input file is written to the output
file unless an error occurs. This means if you use CFU with a protected master file to generate a new protected master file, then
you need two intermediate clear-text files in between: protected master to clear-text temporary master to processing to generate
clear-text next temporary master to new protected master. Also, CFU has a limitation that only one set of columns or the entire
data record can be manipulated, whether you encrypt or tokenize.

CSS utilizes intercepts of standard z/OS input or output processing. The CSS routines intercept the z/OS input or output buffer
and manipulate the data before the application views it (for input), or after the application writes to the output buffer and before
z/OS puts the data into the disk buffer (for output). Both can be done at the same time and multiple sets of data columns can
be manipulated during this process using the same or different data elements. So you can, for example, use encryption for credit
card numbers and use tokens for SSN values or dates of birth. After CSS is installed, you can add protection to applications by
changing the JCL to add the CSS intercepts to the required files. No temporary clear-text files are necessary; protected master file
intercepted on input to application to intercepted new master file as written by the application. For more information, refer to the
example in the DEMOCSS JCL in the PTYxxxx.FPSAMP library.

Table 6-3: Property Comparison – CSS and CFU

Properties PTYPAMLT PTYPAMEX PTYPFILE

Encrypted file format Dictated by application Special (always VB with header
records)

Dictated by application

Algorithms supported CUSP and LP tokens Any supported by z/OS DPS CUSP and LP tokens

Max record length Up to z/OS supported length Less than the length supported by
the OS

Up to z/OS supported length

Fields specification Should be the same for the
protect / unprotect operations

Can be specified only for the
protect operations

Should be the same for the
protect / unprotect operations

Concatenated input Supported Not supported Supported

Number of protected fields Up to 16 non-adjacent Up to 16 non-adjacent 1

Input file verification N/A Yes N/A

Protegrity z/OS Protector Guide 7.0.1 File Protector Solutions on Mainframe z/OS

Confidential 60

Chapter 7
Database Solutions on Mainframe z/OS

7.1 Installing and Configuring

7.2 FIELDPROC Usage

7.3 EDITPROC Usage

7.4 Installing Protegrity User Defined Functions

The DB2 Database Protector for z/OS is a set of products that provides for encrypting and decrypting DB2 data. You can encrypt or
decrypt individual columns using FPR (FIELDPROC) or the entire row using EPR (EDITPROC).

The products use standard DB2 exits to invoke the encryption or decryption. These exits and their usage are documented in manuals
from IBM (refer to the IBM website for downloads): DB2 SQL Reference and DB2 Administration Guide. Certain restrictions from
those manuals are documented in this manual, but we recommend you refer to those documents for additional information.

Note: The IBM software product, z/OS Integrated Cryptographic Service Facility (ICSF), is not required by Protegrity DPS. It is not required to
use any of the supported cryptographic hardware and it is not required to perform software only encryption and decryption.

Protegrity Database Protector for z/OS consists of several modules:

• Cryptographic Services Manager (PTYPCSM module and its associated modules)

• The PEP Server executable and its pieces which run under Open MVS (UNIX System Services or USS)

• The DB2 FIELDPROC function (PTYPFPR module)

• The DB2 EDITPROC function (PTYPEPR module).

• The DB2 UDFs

The DB2 SIGNON exit routine can be used for CICS and IMS environments.The sample code for DSN3SSGN with Protegrity
specific changes (call to PTYPSGN) is included in PTYxxxx.DB2SAMP library. If the DB2 SIGNON exit is not used, then the DB2
Authorized User is used.

DB2 Database Protectors for z/OS support user access through multiple secondary authorization IDs (RACF group name). DB2
FIELDPROC and EDITPROC routines grant access to a user defined in a policy created using ESA by matching the Policy role user
with the DB2 User ID. If match is not found, then the Policy role user will try to match with secondary authorization ID which
can be set using the DB2AUTHIDLVL parameter in the parameter file for Cryptographic Services Manager. The DB2AUTHIDLVL
parameter identifies the number of secondary User IDs, DB2 FIELDPROC and EDITPROC routines should try to match before
the error "User Access Denied" is displayed. For more information about setting parameter, refer to the section Installing the z/OS
Product.

Only one of the FIELDPROC or EDITPROC functions is necessary along with the other services to run the Database Protector. Both
FIELDPROC and EDITPROC may be used at the same site, but not on the same table. Sample jobs and table definitions are also
included in the product.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 61

Before you install the DB2 portions of the product, you should install and customize the Protegrity for z/OS Cryptographic Servers.
For more information about installing the Cryptographic Servers, refer to the section Installing the z/OS Product.

7.1 Installing and Configuring
This section explains the installation and configuration of the Database Protector solutions on Mainframe z/OS.

The following sub-sections explain the installation of Database Protector Solution on Mainframe z/OS. It provides a high-level
setup overview as well as post-installation verification steps.

• Database Protector Setup

• DB2 Protector Installation

• DB2 Protector Installation Verification

7.1.1 Setting up Database Protector on Mainframe z/OS

The following procedure explains in high level how to install DB2 Database Protector on Mainframe z/OS.

To install Database Protector on Mainframe z/OS:

1. Install PEP Server. For more information about installing the PEP server, refer to the section Installing the PEP Server.

2. Install Protegrity Cryptographic Services. For more information about installing the Cryptographic Services, refer to the
section Installing the Cryptographic Server.

3. Install the DB2 Database Protector. For more information about installing the Database Protector, refer to the section DB2
Protector Installation.

4. Activate Protegrity Data Security Platform. For more information about activating the Protegrity Data Security Platform,
refer to the section Activating Protegrity Data Security Platform.

5. Deploy a test policy. For more information about deploying a test policy, refer to the section Deploying a Test Policy.

6. Verify the PEP server installation. For more information about verifying the installation of the PEP server, refer to the section
Verifying the Installation.

7. Verify the protector installation. For more information about verifying the installation of the Database Protector on z/OS,
refer to the section Protector Installation Verification.

7.1.1.1 DB2 Protector Installation

This section outlines the required steps to install and customize the database protector for z/OS.

To install the DB2 Database Protector for z/OS:

1. The files PTYxxxx.DB2AUTH, PTYxxxx.DB2LOAD, and PTYxxxx.DB2SAMP are restored using the LODxxxD.jcl.
For more information, refer to the section Prerequisites for Installing the z/OS Product.

DB2AUTH Load module library, needs to be PDS

DB2LOAD Load module library

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 62

DB2SAMP RECFM F LRECL 80 JCL type library, needs to be PDS

Note: It is recommended to install the IBM z/OS hotfix PI32471 for DB2 before using the FIELDPROC module with non-CUSP
algorithms.

Under DB2 rules, DB2AUTH must be APF authorized, or the load modules included must be copied to authorized libraries.
If the modules are copied, then there are aliases in DB2AUTH that should be maintained.

The default protection or unprotection behavior is for EDITPROC or FIELDPROC to attempt the hardware encryption or
decryption, and fall back to software when the hardware is not available. Aliases allow the site to change that behavior. The
aliases do not necessarily need to be maintained if the modules are copied:

• PTYPFPS is an alias of PTYPFPR. This is the software only alias for FIELDPROC. It forces the FIELDPROC module to
use software encryption and becomes a performance issue when hardware encryption is available.

• PTYPEPS is an alias of PTYPEPR. This is the software only alias for EDITPROC. It forces the EDITPROC module to
use software encryption and becomes a performance issue when hardware encryption is available.

2. Add DB2AUTH (or the copied-to library) to the DB2 Database Facility start-up procedure (for example, DB8GDBM1). DB2
needs to be restarted prior to attempting to define a FIELDPROC or EDITPROC.

7.1.1.2 Protector Installation Verification

This section demonstrates the installation verification of Database Protector on z/OS.

Restart DB2 if it was not already restarted during installation. Start the PTYCSRV procedure to start the Protegrity Cryptographic
Services Manager Task. This starts the other servers. Use the procedure customized during installation. All services can be
stopped by stopping the PTYCSRV procedure from an operator console.

The following sections verifies the installation:

• To verify FIELDPROC

• To verify EDITPROC

7.1.1.2.1 Verifying FIELDPROC

These steps explain the installation verification of FIELDPROC.

To verify FIELDPROC Installation:

1. Run sample SQL script PTYxxxx.DB2SAMP(FPRTEST) using SPUFI.

2. Stop the test table spaces: STOP DB(DSNDB04) SPACENAME(FPR*).

3. Run the job PTYxxxx.DB2SAMP(FPRPRNT) to print the table spaces generated by FPRTEST.

4. Examine the FPRPRNT output to verify that the CCN and LNAME columns are shown in clear text for the FPRTEST and
FPRTEST2 tables and in cipher text for the FPRTEST1 table.

7.1.1.2.2 Verifying EDITPROC

These steps explain the installation verification of EDITPROC.

To verify EDITPROC Installation:

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 63

1. Submit the job PTYxxxx.DB2SAMP(PTYETEST) to generate the sample test EDITPROC.

2. Run sample SQL script PTYxxxx.DB2SAMP(EPRTEST) using SPUFI.

3. Stop the test table spaces: STOP DB(DSNDB04) SPACENAME(EPR*).

4. Run the job PTYxxxx.DB2SAMP(EPRPRNT) to print the table spaces generated by EPRTEST.

5. Examine the EPRPRNT output to verify that the row data are shown in clear text for the EPRTEST and EPRTEST2 tables
and in cipher text for the EPRTEST1 table

7.2 FIELDPROC Usage
DB2 provides a column routine (DB2 exit) called a field procedure (FIELDPROC) which is used to encode and decode customer
short-string data stored in a single column in SQL tables.

DB2 calls the field procedure during LOAD, INSERT, UPDATE, and SELECT. The procedure is also called during data
comparison on the column unless the comparison is for LIKE. If there are any other edit routines (for example EDITPROC)
invoked for data encoding, then FIELDPROC is invoked first. For data decoding, FIELDPROC is invoked last. The column data
on which the operation is being performed is passed to the program (written in assembler) identified in the FIELDPROC and the
contents of the column may change in this program.

For full details of FIELDPROC operations, refer to the IBM DB2 Administration Guide.

The Protegrity field procedure, PTYPFPR, is invoked to encrypt or decrypt the fields for which the FIELDPROC clause is
specified on the CREATE TABLE or ALTER TABLE SQL statement, for example:

CREATE TABLE CUSTTBL (
 ...
 CCN CHAR(16) FIELDPROC PTYPFPR (‘policy data element name’
 [, ‘access denied substitute value’])
 ...

The FIELDPROC clause can be specified only on short string columns (such as: CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, NOT LONG VARCHAR, INT, and so on). You can use IBM DB2 Tools, CA Platinum, BMC Change Manager,
or a similar product to view a table and its properties. This way you can tell that an FIELDPROC exists for a column within a
table.

The Protegrity Database Protector for z/OS FIELDPROC program PTYPFPR takes zero, one, or two parameters. With no
parameter specified for PTYPFPR, the hardcoded key that was used in previous versions (prior to version 4.3.0.0) of Protegrity
Database Protector for z/OS is used. Using PTYPFPR this method does NOT enforce the Protegrity security policy. Data is
encrypted and decrypted as PTYPFPR is called from DB2 without regard for users or time restrictions. Only DB2 access
restrictions limit data usage.

To use the Protegrity security policy for data protection, you must specify at least the first parameter. The policy restrictions are
enforced in addition to any DB2 restrictions. A specific user can be allowed access to a TABLE via DB2, and disallowed access
to a specific column via the security policy. However, denying DB2 access to a TABLE and allowing access via the security
policy still denies access to the user since the policy enforcement is in addition to the DB2 enforcement, not instead of the DB2
enforcement. For example:

CREATE TABLE CUSTTBL (
 ...
 CCN CHAR(16) FIELDPROC PTYPFPR
 ...

The first parameter specifies the policy data element name that should be used to enforce the policy for this column.
FIELDPROC PTYPFPR can be specified for multiple columns in one or more tables with the same or different policy data
element names. If the same policy data element name is used, then the same policy parameters (time, users, and so on) are
enforced. The parameter value is specified as a quoted string to DB2. It must immediately follow the name of the FIELDPROC

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 64

PTYPFPR, and must be enclosed in parentheses. If the second parameter is used, then the closing parentheses (“)”) is after the
second parameter and a comma follows the first parameter. For example:

CREATE TABLE CUSTTBL (
 ...
 CCN CHAR(16) FIELDPROC PTYPFPR (‘PTY_IVP_FPRTEST_CCN’)
 ...

The optional second parameter specifies what value to substitute for the column value in the SELECT case when policy access is
denied, but DB2 access is allowed. If this parameter is NOT specified, and policy access is denied, then a DB2 error is generated
by PTYPFPR when a SELECT attempt is made by a user that does not have policy permission to access the data. The substitute
value is specified as a quoted string. When an attempt is made for update (including INSERT, CHANGE, or DELETE) by a user
that does not have policy access, but does have DB2 access, then a DB2 error gets generated. For example:

CREATE TABLE CUSTTBL (
 ...
 CCN CHAR(16)
 FIELDPROC PTYPFPR (‘PTY_IVP_FPRTEST_CCN’, ‘*****’)
 LNAME VARCHAR(14)
 FIELDPROC PTYPFPR (‘PTY_IVP_FPRTEST_LNAME’, ‘#######’)
 ...

7.2.1 DB2 Passes Control to Field Procedure

DB2 has the following specifics when the control is passed to a Field Procedure.

• CREATE TABLE tablename …COLUMN columnname FIELDPROC fieldprocname … prompts DB2 to load
and validate FIELDPROC.

• FIELDPROC runs as an extension of DB2 with all of DB2’s privileges

• Before the FIELDPROC is added to the table, the data needs to be unloaded. Then the FIELDPROC is added, and the data
re-loaded. This ensures that existing data is encrypted in the table. Other methods than unload or reload may be used to get the
table data encrypted including ALTER TABLE.

Note: DB2 does not pass control if mass delete is requested.

7.2.2 FIELDPROC Restrictions and Limitations

DB2 has restrictions and limitations on the use of a Field Procedure. These are documented in the following manuals from IBM:
DB2 SQL Reference and DB2 Administration Guide.

The FIELDPROC restrictions and limitations are documented below, but these may not be the only restrictions.

• A FIELDPROC name must be unique and cannot be the same as an existing DB2 entity name.

• The column must not be a security label.

• The column must not be defined with DEFAULT.

• A field procedure is not invoked for null values. A user could insert null values regardless security policy access constraints.

• A field procedure is not invoked for a DELETE operation without a WHERE clause on a table in a segmented table space.

• Only short-string datatypes are supported: CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, etc.

• DB2 FIELDPROC currently support INT and SMALLINT. For using Token Type Integer with Size 2, create DB2 column
with CHAR(2) and for using Token Type Integer with Size 4, create DB2 column with CHAR(4), otherwise it returns an error
with a message “Invalid Input Size”.

• DB2 does not have support in FIELDPROC or UDFs for BIGINT. Using an INTEGER token with size of 8 returns an error.

• Predicates that do comparisons only work for equals or not equals. Range predicates, less than, and greater than predicates do
not work correctly.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 65

• Left justified data for integer tokens and non-numeric characters are not supported with FIELDPROC. Attempt to use of these
will show error.

7.2.3 Unprotect Only FIELDPROC

The Protegrity unprotect only field procedure, PTYPFPU, is invoked to decrypt the fields for which the FIELDPROC clause is
specified.

The data can be protected using z/OS or any other protector on any platform. The data when inserted in columns on which
unprotect only Fieldproc clause is specified, it will copy data as is and not perform any encryption to avoid double encryption.
When the column with FIELDPROC PTYPFPU is selected, the data is decrypted using the policy data element name specified in
column definition during CREATE TABLE.

Note: For VARCHAR column, the column length should be increased by 2 bytes to handle the length.

Non-length preserving tokens are supported with only VARCHAR column type.

For non-z/OS Protectors,

• The data protected using tokens, should be transferred to z/OS as text, to translate the data from ASCII to EBCDIC.

• The data protected using encryption, should be transferred to z/OS as binary, to keep the data as is. CCSID ASCII should be used
during CREATE TABLE.

While using unprotect only field procedure, it is recommended to use tokens for data protection on non-z/OS protectors.

The PTYPFPU does not support unprotecting a data that is protected with Unicode tokens.

Following is an example where the Protegrity unprotect only field procedure, PTYPFPU, is specified on the CREATE TABLE or
ALTER TABLE SQL statement.

CREATE TABLE CUSTTBL (
 ...
 CCN CHAR(16) FIELDPROC PTYPFPU (‘policy data element name’
[, ‘access denied substitute value’])
 ...

For details on FIELDPROC operations, refer to the IBM DB2 Administration Guide.

7.3 EDITPROC Usage
This section explains the EDITPROC usage .

DB2 provides an Edit Procedure (DB2 exit) called an EDITPROC which is used to encode and decode customer data stored in
SQL tables. As such, many IBM customers have previously used this exit to compress data and recently to encrypt and decrypt
their data and are generally aware of the exit’s existence. In addition, IBM and some vendors utilize this exit in their encryption
solution for DB2 on mainframes. For more details of EDITPROC operations, refer to the IBM DB2 Administration Guide.

DB2 calls the edit routine exit during LOAD, INSERT, and UPDATE. The row on which the operation is being performed
is passed to the program (written in assembler) identified in the EDITPROC and the contents of the row may change in this
program. You can use IBM DB2 Tools, CA Platinum, BMC Change Manager, or a similar product to view a table and its
properties. This way, you can tell that an EDITPROC exists for a table.

Since DB2 does not allow user parameters to be passed to EDITPROC, the site must generate a unique EDITPROC for each
unique policy data element to be used for row level encryption or decryption. The policy data element name is included in the

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 66

customized EDITPROC. A sample job (PTYETEST) is provided in the PTYxxxx.DB2SAMP library to generate the unique
EDITPROC. The sample job is set to generate the EDITPROC for the examples shown below.

An EDITPROC is added to a table using the CREATE TABLE DML. The Protegrity field procedure, PTYPEPR, is invoked to
encrypt or decrypt the row for which the EDITPROC clause is specified on the CREATE TABLE SQL statement.

CREATE TABLE PTY.EPRTEST1 … EDITPROC PTYPEPR;

7.3.1 DB2 Passes Control to an Edit Procedure

DB2 has the following specifics when the control is passed to an Edit Procedure.

• CREATE TABLE tablename …COLUMN columnname EDITPROC editprocname … adds EDITPROC.

• EDITPROC runs as an extension of DB2 with all of DB2’s privileges.

• Before the EDITPROC is added to the table, the data needs to be unloaded. Then the EDITPROC is added, and the data
re-loaded. This ensures that existing data is encrypted in the table. Other methods than unload or reload may be used to get the
table data encrypted.

7.3.2 EDITPROC Restrictions and Limitations

DB2 has restrictions and limitations on the use of an Edit Procedure.

Following are the EDITPROC restrictions and limitations:

• An EDITPROC name must be unique and cannot be the same as an existing DB2 entity name.

• When using an EDITPROC, the tablespace page size is reduced by 10 bytes.

• The table must not contain a LOB or ROWID column.

• Indexes are not encrypted.

• Only CUSP encryption logics are supported with EDITPROC.

• EDITPROC does not support masking

7.3.3 EDITPROC with Compression and Decompression support

DB2 Edit Procedure (EDITPROC) allows compression and decompression of customer data.

The customer site can choose to compress the data, in addition to encryption, while using Protegrity's EDITPROC routine.
During LOAD, INSERT, and UPDATE, the data will be compressed first, using the compression routine provided by the
customer site, and then the compressed data would be encrypted. During UNLOAD and SELECT, the data will be decrypted first,
and then the decrypted data will be decompressed using the compression routine provided by the customer site.

To compress the data using EDITPROC routine, the site must configure the parameter "COMPRESS=Y" in the customized
EDITPROC routine that is generated with the PTYETEST sample job. The default value is "COMPRESS=N".

Note:

• The sample compression routine (PTYETEST) provided by Protegrity is based on the sample EDITPROC compression routine
DSN8HUFF (HUFFMAN COMPRESSION EDITPROC), which is provided by IBM.

• The sample routine (DSN8HUFF) that compresses the Huffman data is provided in the prefix.SDSNSAMP library.

• The customer site can provide their own compression routine, which should be named as "PTYPCMPR". This customized compression
routine must follow the IBM sample for passing a parameter.

7.4 Installing Protegrity User Defined Functions
This section describes all the Protegrity UDFs that are available for Mainframe z/OS.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 67

The following sub-sections explain the installation of Protegrity UDFs on Mainframe z/OS:

• Pre-Installation Configuration

• UDFs Installation

7.4.1 Pre-Installation Configuration

This section describes the steps that you need to take before installing the specific DB2 UDFs. It includes some Work Load
management configuration and user permissions in the DB2 subsystem.

To configure the DB2 Database Protector:

1. Create the appropriate WLM (Work Load Management) application environment, considering the target libraries in the
STEPLIB part of the Work Load Management JCL (Job Control Language) and “Limit on starting server address space for
subsystem instance”.

Sample Work Load Management configuration:

Action Application Environment Name Description
__ PROTGRIT Stored procedures for
Protegrity
Appl Environment Name . . PROTGRIT
Description Stored procedures for Protegrity
Subsystem type DB2
Procedure name TSNWLM
Start parameters APPLENV=PROTGRIT,DB2SSN=db2ssid,NUMTCB=1
Limit on starting server address spaces for a subsystem instance:
No limit

The JCL procedure that is used in TSNWLM:

//***
//* WLM-ESTABLISHED STORED PROCEDURES ADDRESS SPACE *
//***
//TSNWLM PROC RGN=0M,APPLENV=PROTGRIT,DB2SSN=db2ssid,NUMTCB=1
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
// DD DISP=SHR,DSN=hlqual.UDFUDFX <== Protegrity UDF procedure library
//SYSOUT DD SYSOUT=D,DEST=SPF
//SYSPRINT DD SYSOUT=D,DEST=SPF
//SYSUDUMP DD SYSOUT=D,DEST=SPF
//SYSABEND DD SYSOUT=D,DEST=SPF

Note: It is recommended that the value of REGION parameter should be at least 512M.

2. Create a user who runs the scripts to create the UDFs. The user must have these grants in the DB2 database:

• GRANT USE OF STOGROUP sgname TO PTY

• GRANT CREATEDBA TO PTY

• GRANT BINDADD TO PTY

• GRANT PACKADM ON COLLECTION PTY TO PTY WITH GRANT OPTION

3. Grant access to UDFs for users. Users need to have permission to access the Protegrity User Defined Functions. The user
must have this grant in the DB2 database:

• GRANT EXECUTE ON FUNCTION PTY.* TO user

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 68

where user is the user or group that you want to have authorized to use the UDFs. You may need GROUP specified in front
of the group name

7.4.2 Installing UDFs

This section describes how to create and install UDFs for a DB2 database. Follow the below procedure to install the UDFs:

To install UDFs:

1. Files PTYxxxx.UDFSQL, PTYxxxx.UDFUDFX, and PTYxxxx.UDFSAMP are restored using LODxxxD.jcl.

UDFUDFX contains executables of UDFs

UDFSQL contains SQL procedures to create and delete UDFs

UDFSAMP contains the same invocations of a UDF

UDFUDFX is a PDS-E. The other two files are PDS files.

2. Edit PTYxxxx.UDFSQL (CREATOBJ) member and change WLM ENVIRONMENT in each CREATE FUNCTION query
to the Workload Manager Environment that you created above (APPLENV=PROTGRIT).

3. Include PTYxxxx.UDFUDFX in the STEPLIB concatenation for the DB2 Workload Manager start-up procedure.

4. Connect as a privileged user and open the script PTYxxxx.UDFSQL (CREATOBJ), where PTYxxxx is the high level
qualified used to load the library.

5. Execute PTYxxxx.UDFSQL (CREATOBJ).

6. Install the PEP Server as it is described in the section PEP Server Installation. Note that this is the only z/OS server that you
need to install if you are only using the UDFs. You can use the same PEP Server for UDFs and FIELDPROC or EDITPROC.

7. Build and deploy a policy as is described in previous sections. You may use the same data element names as described above
or use different data element names.

7.4.3 General UDFs

This section lists the general UDFs including syntax.

7.4.3.1 pty.whoami

This function returns the name of the user who is currently logged in.

The external name is PDWHOAMI.

pty.whoami()

Parameters

None

Returns

This UDF returns the name of user logged in to the database as VARCHAR(256).

Example

SELECT PTY.whoami() from SYSIBM.SYSDUMMY1;

7.4.3.2 pty.getversion

This function returns the version of the product.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 69

The external name is PDGETVER.

pty.getversion()

Parameters

None

Returns

This UDF returns the version of the product as VARCHAR(256).

Example

SELECT PTY.getversion() from SYSIBM.SYSDUMMY1;

7.4.3.3 pty.getcurrentkeyid

This function returns the current key ID for a data element. It is typically used together with getkeyid to determine if some data is
protected with the most recent key for a given data element.

The external name is PDGCKEY.

pty.getcurrentkeyid(communicationid INTEGER, dataelement VARCHAR)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg

dataelement VARCHAR(64) Specifies the name of data element.

Returns

This UDF returns the current key ID as INTEGER.

Example

SELECT PTY.getcurrentkeyid(8,’data-element name’) from SYSIBM.SYSDUMMY1;

7.4.3.4 pty.getkeyid

This function returns the current key ID that was used to protect an item of data. It is typically used together with getcurrentkeyid
to determine if some data is protected with the most recent key for a given data element.

The external name is PDGKEY.

pty.getkeyid(communicationid INTEGER, dataelement VARCHAR, data VARCHAR FOR BIT DATA)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg

dataelement VARCHAR(64) Specifies the name of data element.

data VARCHAR(32672) FOR
BIT DATA

Specifies the data that has been encrypted using a key ID.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 70

Returns

This UDF returns the key ID as INTEGER.

Example

SELECT PTY.getkeyid(8,’data-element name’,pty.ins_enc_varchar (8,’data-element name’ ,
’abc123456’,0)) from SYSIBM.SYSDUMMY1;

7.4.4 Access Check UDFs

These UDFs can be used to check access permissions. The procedures will pass if user has access, otherwise it will cast an
exception with the reason for failure.

7.4.4.1 pty.have_sel_perm

This function is used to determine if the user has select access to a data element.

The external name is PDHSPERM.

pty.have_sel_perm(communicationid INTEGER, dataelement VARCHAR)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

Returns

If the user has select access, the UDF returns an INTEGER value (1).

Note: If the user does not have the select access, this UDF throws an exception with an appropriate message.

Example

SELECT pty.have_sel_perm(8,’data-element name’) FROM SYSIBM.SYSDUMMY1;

7.4.4.2 pty.have_upd_perm

This function is used to determine if the user has update access to a data element.

The external name is PDHUPERM.

pty.have_upd_perm(communicationid INTEGER, dataelement VARCHAR)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

Returns

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 71

If the user has update access, the UDF returns an INTEGER value (1).

Note: If the user does not have the update access, this UDF throws an exception with an appropriate message.

Example

SELECT pty.have_upd_perm(8,’data-element name’) FROM SYSIBM.SYSDUMMY1;

7.4.4.3 pty.have_ins_perm

This function is used to determine if the user has insert access to a data element.

The external name is PDHIPERM.

pty.have_ins_perm(communicationid INTEGER, dataelement VARCHAR)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

Returns

If the user has insert access, the UDF returns an INTEGER value (1).

Note: If the user does not have the insert access, this UDF throws an exception with an appropriate message.

Example

SELECT pty.have_ins_perm(8,’data-element name’) FROM SYSIBM.SYSDUMMY1;

7.4.4.4 pty.have_del_perm

This function is used to determine if the user has delete access to a data element.

The external name is PDHDPERM.

pty.have_del_perm(communicationid INTEGER, dataelement VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 72

If the user has delete access, the UDF returns an INTEGER value (1).

Note: If the user does not have the delete access, this UDF throws an exception with an appropriate message.

Example

SELECT pty.have_del_perm(8,’data-element name’,0) FROM SYSIBM.SYSDUMMY1;

7.4.4.5 pty.del_check

This function is used to determine if the user has delete access to a data element.

The external name is PDDCHECK.

pty.del_check(communicationid INTEGER, dataelement VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

If the user has delete access, the UDF returns an INTEGER value (1).

Note: If the user does not have the delete access, this UDF throws an exception with an appropriate message.

Example

SELECT pty. del_check(8,’data-element name’,0) FROM SYSIBM.SYSDUMMY1;

7.4.5 VARCHAR UDFs

These UDFs can be used to encrypt or decrypt VARCHAR data.

Note: z/OS UDFs do not support LONG VARCHAR data type.

7.4.5.1 pty.ins_enc_varchar

This function is used to encrypt data with a data element.

The external name is PDIVCHR.

pty.ins_enc_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 73

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (CCN VARCHAR(20) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (CCN)
VALUES (PTY.ins_enc_varchar(8,'data-element','4234567890123456',0));

7.4.5.2 pty.upd_enc_varchar

This function is used to encrypt data with a data element.

The external name is PDUVCHR.

pty.upd_enc_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 74

Example

UPDATE table-name SET (CCN) =
PTY.upd_enc_varchar(8,'data-element','4234567890123456',0);

7.4.5.3 pty.sel_dec_varchar

This function is used to decrypt data with a data element.

The external name is PDSVCHR.

pty.sel_dec_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as VARCHAR(32672).

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_varchar(8,'data-element',CCN,0) as CCN
from table-name;

7.4.5.4 pty.ins_varchar

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDIVCHRM.

pty.ins_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 75

Name Type Description

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672).

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (CCN VARCHAR(20))
CCSID EBCDIC IN DATABASE DSNDB04;

INSERT into table-name (CCN)
VALUES (PTY.ins_varchar(8,’token-element','4234567890123456',0));

7.4.5.5 pty.upd_varchar

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUVCHRM.

pty.upd_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672).

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (CCN) =
PTY.upd_varchar(8,'token-element','4234567890123456',0);

7.4.5.6 pty.sel_varchar

This function is used for no encryption with a data element as well as for de-tokenization.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 76

The external name is PDSVCHRM.

pty.sel_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as VARCHAR(32672).

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT (PTY.sel_varchar(8,'token-element',CCN,0) as CCN
 from table-name;

7.4.5.7 pty.ins_hash_varchar

This function uses the hash function to protect the data using a data element.

The external name is PDIVCHRH.

pty.ins_hash_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the hash value as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 77

Example

CREATE TABLE table-name (CCN VARCHAR(20) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (CCN)
VALUES (pty.ins_hash_varchar(10,'HASHING','567#$%JEEVES',0));

7.4.5.8 pty.upd_hash_varchar

This function uses the hash function to protect the data using a data element.

The external name is PDUVCHRH.

pty.upd_hash_varchar(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the hash value as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (CCN) =
pty.upd_hash_varchar(10,'HASHING','HSHAIMN12345',0);

7.4.6 VARCHAR FOR BIT DATA UDFs

These UDFs can be used to encrypt or decrypt VARCHAR FOR BIT DATA.

7.4.6.1 pty.ins_enc_varcharfbd

This function is used to encrypt data using a data element.

The external name is PDIVCHRF.

pty.ins_enc_varcharfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 78

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (CCN VARCHAR(20) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (CCN)
VALUES (PTY.ins_enc_varcharfbd(8,'data-element','4234567890123456',0));

7.4.6.2 pty.upd_enc_varcharfbd

This function is used to encrypt data with a data element.

The external name is PDUVCHRF.

pty.upd_enc_varcharfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 79

Example

UPDATE table-name SET (CCN) =
PTY.upd_enc_varcharfbd(8,'data-element','4234567890123456',0);

7.4.6.3 pty.sel_dec_varcharfbd

This function is used to decrypt data with a data element.

The external name is PDSVCHRF.

pty.sel_dec_varcharfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_varcharfbd(8,'data-element',CCN,0) as CCN
from table-name;

7.4.6.4 pty.ins_varcharfbd

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDIVCHF2

pty.ins_varcharfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 80

Name Type Description

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (CCN VARCHAR(20) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (CCN)
VALUES (PTY.ins_varcharfbd(8,token-element','4234567890123456',0));

7.4.6.5 pty.upd_varcharfbd

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUVCHF2.

pty.upd_varcharfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 81

Example

UPDATE table-name SET (CCN) =
PTY.upd_varcharfbd(8,'token-element','4234567890123456',0);

7.4.6.6 pty.sel_varcharfbd

This function is used for no encryption with a data element as well as for de-tokenization.

The external name is PDSVCHF2.

pty.sel_varcharfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(32672) FOR
BIT DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as VARCHAR(32672) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_varcharfbd(8,’token-element',CCN,0) as CCN
from table-name;

7.4.7 CHAR UDFs

These UDFs can be used to encrypt and decrypt CHAR data.

7.4.7.1 pty.ins_enc_char

This function is used to encrypt data with a data element.

The external name is PDIVCHR.

pty.ins_enc_char(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 82

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(254) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(300) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (CCN VARCHAR(20) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (CCN)
 VALUES (PTY.ins_enc_char(8,'data-element','4234567890123456',0));

7.4.7.2 pty.upd_enc_char

This function is used to encrypt data with a data element.

The external name is PDUVCHR.

pty.upd_enc_char(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(254) Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(300) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 83

Example

UPDATE table-name SET (CCN) =
 PTY.upd_enc_char(8,'data-element','4234567890123456',0);

7.4.7.3 pty.sel_dec_char

This function is used to decrypt data with a data element.

The external name is PDSVCHR.

pty.sel_dec_char(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR (300) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as VARCHAR(254).

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_char(8,'data-element',CCN,0) as CCN
from table-name;

7.4.8 CHAR FOR BIT DATA UDFs

These UDFs can be used to encrypt and decrypt CHAR FOR BIT DATA.

7.4.8.1 pty.ins_enc_charfbd

This function is used to encrypt data with a data element.

The external name is PDIVCHRF.

pty.ins_enc_charfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 84

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(254) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(300) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (CCN VARCHAR(20) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (CCN)
VALUES (PTY.ins_enc_charfbd(8,'data-element','4234567890123456',0));

7.4.8.2 pty.upd_enc_charfbd

This function is used to encrypt data with a data element.

The external name is PDUVCHRF.

pty.upd_enc_charfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(254) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(300) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 85

Example

UPDATE table-name SET (CCN) =
 PTY.upd_enc_charfbd(8,'data-element','4234567890123456',0);

7.4.8.3 pty.sel_dec_charfbd

This function is used to decrypt data with a data element.

The external name is PDSVCHRF.

pty.sel_dec_charfbd(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(300) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as VARCHAR(254) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_charfbd(8,'data-element',CCN,0) as CCN
from table-name;

7.4.9 DATE UDFs

These UDFs can be used to encrypt and decrypt DATE data.

7.4.9.1 pty.ins_enc_date

This function is used to encrypt data with a data element.

The external name is PDIDATE.

pty.ins_enc_date(communicationid INTEGER, dataelement VARCHAR, input_data DATE, scid INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 86

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DATE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (DATE1 VARCHAR(34) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (DATE1)
 VALUES (PTY.ins_enc_date(8,'data-element',DATE('12/31/2014'),0));

7.4.9.2 pty.upd_enc_date

This function can be used to encrypt data with a data element.

The external name is PDUDATE.

pty.upd_enc_date(communicationid INTEGER, dataelement VARCHAR, input_data DATE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DATE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 87

Example

UPDATE table-name SET (DATE1) =
 PTY.upd_enc_date(8,'data-element',DATE(‘07/02/1985’),0);

7.4.9.3 pty.sel_dec_date

This function is used to decrypt data with a data element.

The external name is PDSDATE.

pty.sel_dec_date(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(34) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as DATE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_date(8,'data-element',DATE1,0) as DATE1
from table-name;

7.4.9.4 pty.ins_date

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDIDATEM.

pty.ins_date(communicationid INTEGER, dataelement VARCHAR, input_data DATE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 88

Name Type Description

input_data DATE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as DATE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (DATE1 DATE)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (DATE1)
 VALUES (PTY.ins_date(8,'date-token',DATE('12/31/2014'),0));

7.4.9.5 pty.upd_date

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUDATEM.

pty.upd_date(communicationid INTEGER, dataelement VARCHAR, input_data DATE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DATE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as DATE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (DATE1) =
 PTY.upd_date(8,'date-token’,DATE(‘07/02/1985’),0);

7.4.9.6 pty.sel_date

This function is used for no encryption with a data element as well as for de-tokenization.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 89

The external name is PDSDATEM.

pty.sel_date(communicationid INTEGER, dataelement VARCHAR, input_data DATE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DATE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as DATE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_date(8,'date-token',DATE1,0) as DATE1
from table-name;

7.4.10 TIMESTAMP UDFs

These UDFs can be used to encrypt and decrypt TIMESTAMP data.

7.4.10.1 pty.ins_enc_timestamp

This function is used to encrypt data with a data element.

The external name is PDITSTMP.

pty.ins_enc_timestamp(communicationid INTEGER, dataelement VARCHAR, input_data TIMESTAMP, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIMESTAMP Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 90

This UDF returns the encrypted data as VARCHAR(50) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (DATETIME VARCHAR(50) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (DATETIME)
 VALUES (PTY.ins_enc_timestamp(8,'data-element',TIMESTAMP('2014-12-31 11:59:59'),0));

7.4.10.2 pty.upd_enc_timestamp

This function can be used to encrypt data with a data element.

The external name is PDUTSTMP.

pty.upd_enc_timestamp(communicationid INTEGER, dataelement VARCHAR, input_data TIMESTAMP, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIMESTAMP Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR (50) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (DATETIME) =
 PTY.upd_enc_timestamp(8,'data-element', TIMESTAMP('2014-12-31 11:59:59'),0);

7.4.10.3 pty.sel_dec_timestamp

This function is used to decrypt data with a data element.

The external name is PDSTSTMP.

pty.sel_dec_timestamp(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 91

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(50) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as TIMESTAMP.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_timestamp(8,'data-element',DATETIME,0) as DATETIME

7.4.11 TIME UDFs

These UDFs can be used to encrypt and decrypt TIME data.

7.4.11.1 pty.ins_enc_time

This function is used to encrypt data with a data element.

The external name is PDITIME.

pty.ins_enc_time(communicationid INTEGER, dataelement VARCHAR, input_data TIME, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIME Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 92

Example

CREATE TABLE table-name (TIME1 VARCHAR(34) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (TIME1)
 VALUES (PTY.ins_enc_time(8,'data-element',TIME('11:59:59'),0));

7.4.11.2 pty.upd_enc_time

This function can be used to encrypt data with a data element.

The external name is PDUTIME.

pty.upd_enc_time(communicationid INTEGER, dataelement VARCHAR, input_data TIME, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIME Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (TIME1) =
 PTY.upd_enc_time(8,'data-element',TIME('02:59:59'),0);

7.4.11.3 pty.sel_dec_time

This function is used to decrypt data with a data element.

The external name is PDSTIME.

pty.sel_dec_time(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 93

Name Type Description

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(34) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as TIME.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_time(8,'data-element',TIME1,0) as TIME1
from table-name;

7.4.11.4 pty.ins_time

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDITIME2.

pty.ins_time(communicationid INTEGER, dataelement VARCHAR, input_data TIME, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIME Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as TIME.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (TIME1 TIME)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (TIME1)
 VALUES (PTY.ins_time(8,'NOENC',TIME('11:59:59'),0));

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 94

7.4.11.5 pty.upd_time

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUTIME2.

pty.upd_time(communicationid INTEGER, dataelement VARCHAR, input_data TIME, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIME Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as TIME.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (TIME1) =
 PTY.upd_time(8,'token-element',TIME('11:59:59'),0);

7.4.11.6 pty.sel_time

This function is used for no encryption with a data element as well as for de-tokenization.

The external name is PDSTIME2.

pty.sel_time(communicationid INTEGER, dataelement VARCHAR, input_data TIME, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data TIME Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 95

This UDF returns the decrypted data as TIME.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_time(8,’token-element',TIME1,0) as TIME1
 from table-name;

7.4.12 INTEGER UDFs

These UDFs can be used to encrypt and decrypt INTEGER data.

7.4.12.1 pty.ins_enc_integer

This function is used to encrypt data with a data element.

The external name is PDIINT.

pty.ins_enc_integer(communicationid INTEGER, dataelement VARCHAR, input_data INTEGER, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data INTEGER Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (INT4 VARCHAR(34) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (INT4)
 VALUES (PTY.ins_enc_integer(8,'data-element',1234567890,0));

7.4.12.2 pty.upd_enc_integer

This function can be used to encrypt data with a data element.

The external name is PDUINT.

pty.upd_enc_integer(communicationid INTEGER, dataelement VARCHAR, input_data INTEGER, scid INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 96

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data INTEGER Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR (34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (INT4) =
 PTY.upd_enc_integer(8,'data-element',9876543210,0);

7.4.12.3 pty.sel_dec_integer

This function is used to decrypt data with a data element.

The external name is PDSINT.

pty.sel_dec_integer(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(34) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as INTEGER.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 97

Example

SELECT pty.sel_dec_integer(8,'data-element',INT4,0) as INT4
from table-name;

7.4.12.4 pty.ins_integer

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDIINT2.

pty.ins_integer(communicationid INTEGER, dataelement VARCHAR, input_data INTEGER, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data INTEGER Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as INTEGER.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (INT4 INTEGER)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (INT4)
 VALUES (PTY.ins_integer(8,’integer-token(4)',1234567890,0));

7.4.12.5 pty.upd_integer

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUINT2.

pty.upd_integer(communicationid INTEGER, dataelement VARCHAR, input_data INTEGER, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 98

Name Type Description

input_data INTEGER Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as INTEGER.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (INT4) =
 PTY.upd_integer(8,'integer-token(4)',9876543210,0);

7.4.12.6 pty.sel_integer

This function is used for no encryption with a data element as well as for de-tokenization.

The external name is PDSINT2.

pty.sel_time(communicationid INTEGER, dataelement VARCHAR, input_data INTEGER, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data INTEGER Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as INTEGER.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_integer(8,'integer-token(4)',INT4,0) as INT4
from table-name;

7.4.13 SMALLINT UDFs

These UDFs can be used to encrypt and decrypt SMALLINT data.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 99

7.4.13.1 pty.ins_enc_smallint

This function is used to encrypt data with a data element.

The external name is PDISINT.

pty.ins_enc_smallint(communicationid INTEGER, dataelement VARCHAR, input_data SMALLINT, scid INTEGER)

Parameters

Name Type Description

comunicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data SMALLINT Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (INT2 VARCHAR(34) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (INT2)
 VALUES (PTY.ins_enc_smallint(8,'data-element',12345,0));

7.4.13.2 pty.upd_enc_smallint

This function can be used to encrypt data with a data element.

The external name is PDUSINT.

pty.upd_enc_smallint(communicationid INTEGER, dataelement VARCHAR, input_data SMALLINT, scid INTEGER)

Parameters

Name Type Description

comunicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data SMALLINT Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 100

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (INT2) =
 PTY.upd_enc_smallint(8,'data-element',9876,0);

7.4.13.3 pty.sel_dec_smallint

This function is used to decrypt data with a data element.

The external name is PDSSINT.

pty.sel_dec_smallint(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(34) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as SMALLINT.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_smallint(8,'data-element',INT2,0) as INT2
from table-name;

7.4.13.4 pty.ins_smallint

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDISINT2.

pty.ins_smallint(communicationid INTEGER, dataelement VARCHAR, input_data SMALLINT, scid INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 101

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data SMALLINT Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as SMALLINT.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (INT2 SMALLINT)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (INT2)
 VALUES (PTY.ins_smallint(8,’smallint-token(2)',12345,0));

7.4.13.5 pty.upd_smallint

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUSINT2.

pty.upd_smallint(communicationid INTEGER, dataelement VARCHAR, input_data SMALLINT, scid INTEGER)

Parameters

Name Type Description

comunicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data SMALLINT Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as SMALLINT.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 102

Example

UPDATE table-name SET (INT2) =
 PTY.upd_smallint(8,'smallint-token(2)',987,0);

7.4.13.6 pty.sel_smallint

This function is used for no encryption with a data element as well as for de-tokenization.

The external name is PDSSINT2.

pty.sel_smallint(communicationid INTEGER, dataelement VARCHAR, input_data SMALLINT, scid INTEGER)

Parameters

Name Type Description

comunicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data SMALLINT Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as SMALLINT.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_smallint(8,'smallint-token(2)',INT2,0) as INT2
from table-name;

7.4.14 REAL UDFs

These UDFs can be used to encrypt and decrypt REAL data.

7.4.14.1 pty.ins_enc_real

This function is used to encrypt data with a data element.

The external name is PDIREAL.

pty.ins_enc_real(communicationid INTEGER, dataelement VARCHAR, input_data REAL, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 103

Name Type Description

dataelement VARCHAR(64) Specifies the name of data element.

input_data REAL Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (REAL1 VARCHAR(34) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (REAL1)
 VALUES (PTY.ins_enc_real(8,'data-element', REAL(100.001),0));

7.4.14.2 pty.upd_enc_real

This function can be used to encrypt data with a data element.

The external name is PDUREAL.

pty.upd_enc_real(communicationid INTEGER, dataelement VARCHAR, input_data REAL, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data REAL Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (REAL1) =
 PTY.upd_enc_real(8,'data-element', REAL(298.981),0);

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 104

7.4.14.3 pty.sel_dec_real

This function is used to decrypt data with a data element.

The external name is PDSREAL.

pty.sel_dec_real(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(34) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as REAL.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_real(8,'data-element',REAL1,0) as REAL1
from table-name;

7.4.14.4 pty.ins_real

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDIREAL2.

pty.ins_real(communicationid INTEGER, dataelement VARCHAR, input_data REAL, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data REAL Specifies the input data for UDF.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 105

Name Type Description

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as REAL.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (REAL1 REAL)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (REAL1)
 VALUES (PTY.ins_real(8,’NOENC',REAL(100.001),0));

7.4.14.5 pty.upd_real

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUREAL2.

pty.upd_real(communicationid INTEGER, dataelement VARCHAR, input_data REAL, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data REAL Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as REAL.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (REAL1) =
 PTY.upd_real(8,'NOENC',REAL(298.981),0);

7.4.14.6 pty.sel_real

This function is used for no encryption with a data element as well as for de-tokenization.

The external name is PDSREAL2.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 106

pty.sel_real(communicationid INTEGER, dataelement VARCHAR, input_data REAL, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data REAL Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as REAL.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_real(8,'NOENC',REAL1,0) as REAL1
from table-name;

7.4.15 DOUBLE UDFs

These UDFs can be used to encrypt and decrypt DOUBLE data.

7.4.15.1 pty.ins_enc_double

This function is used to encrypt data with a data element.

The external name is PDIDBLE.

pty.ins_enc_double(communicationid INTEGER, dataelement VARCHAR, input_data DOUBLE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DOUBLE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 107

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (DOUBLE1 VARCHAR(34) FOR BIT DATA)
CCSID EBCDIC IN DATABASE DSNDB04;
INSERT into table-name (DOUBLE1)
 VALUES (PTY.ins_enc_double(8,'data-element', DOUBLE(100.001),0));

7.4.15.2 pty.upd_enc_double

This function can be used to encrypt data with a data element.

The external name is PDUDBLE.

pty.upd_enc_double(communicationid INTEGER, dataelement VARCHAR, input_data DOUBLE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DOUBLE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as VARCHAR(34) FOR BIT DATA.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (DOUBLE1) =
 PTY.upd_enc_double(8,'data-element', DOUBLE(298.981),0);

7.4.15.3 pty.sel_dec_double

This function is used to decrypt data with a data element.

The external name is PDSDBLE.

pty.sel_dec_double(communicationid INTEGER, dataelement VARCHAR, input_data VARCHAR FOR BIT DATA, scid
INTEGER)

Parameters

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 108

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data VARCHAR(34) FOR BIT
DATA

Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as DOUBLE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_dec_double(8,'data-element',DOUBLE1,0) as DOUBLE1
from table-name;

7.4.15.4 pty.ins_double

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDIDBLE2.

pty.ins_double(communicationid INTEGER, dataelement VARCHAR, input_data DOUBLE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DOUBLE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as DOUBLE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

CREATE TABLE table-name (DOUBLE1 DOUBLE)
CCSID EBCDIC IN DATABASE DSNDB04;

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 109

INSERT into table-name (DOUBLE1)
 VALUES (PTY.ins_double(8,’NOENC',DOUBLE(100.001),0));

7.4.15.5 pty.upd_double

This function is used for no encryption with a data element as well as for tokenization.

The external name is PDUDBLE2.

pty.upd_double(communicationid INTEGER, dataelement VARCHAR, input_data DOUBLE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies location where policy can be found. Must be the same as
configured in pepserver.cfg

dataelement VARCHAR(64) Specifies the name of data element.

input_data DOUBLE Specifies the input data for UDF.

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the encrypted data as DOUBLE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

UPDATE table-name SET (DOUBLE1) =
 PTY.upd_double(8,'NOENC',DOUBLE(298.981),0);

7.4.15.6 pty.sel_double

This function is used for no encryption with a data element as well as for de-tokenization.

The external name is PDSDBLE2.

pty.sel_double(communicationid INTEGER, dataelement VARCHAR, input_data DOUBLE, scid INTEGER)

Parameters

Name Type Description

communicationid INTEGER Specifies the location where policy can be found. Must be the same as
configured in pepserver.cfg.

dataelement VARCHAR(64) Specifies the name of data element.

input_data DOUBLE Specifies the input data for UDF.

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 110

Name Type Description

scid INTEGER Specifies the security co-ordinate ID, which is not used. The value
should be set to zero.

Returns

This UDF returns the decrypted data as DOUBLE.

Note: If the function call fails, this UDF throws an exception with an appropriate message.

Example

SELECT pty.sel_double(8,'NOENC',DOUBLE1,0)
 as DOUBLE1 from table-name;

Protegrity z/OS Protector Guide 7.0.1 Database Solutions on Mainframe z/OS

Confidential 111

Chapter 8
The IMS Solutions on Mainframe z/OS

8.1 Installing and Configuring the IMS Protector on Mainframe z/OS

8.2 Segment Edit/Compression Exit Routine

8.3 PTYPSLL/PTYPSLI to protect/unprotect IMS data

The IMS Protector for z/OS is a set of products that provides capabilities for encrypting and decrypting data on IMS database. The
entire database segment will be encrypted and decrypted using IMS Protector. The protector has Compression facility to compress data
on segment before encryption and decompress the data after decryption.

The IMS Protector for z/OS use standard IMS segment edit/compression exit routine to invoke the encryption or decryption. These
exits and their usage are documented in manuals from IBM (refer to the IBM website for downloads): IMS Administration Guide
Database Manager. Certain restrictions from those manuals are documented in this manual, but we recommend you refer to those
documents for additional information.

Note: The IBM software product, z/OS Integrated Cryptographic Service Facility (ICSF), is not required by Protegrity DPS. It is not required to
use any of the supported cryptographic hardware and it is not required to perform software only encryption and decryption.

Protegrity IMS Protector for z/OS consists of the following modules:

• The Cryptographic Services Manager (PTYPCSM module and its associated modules)

• The PEP server executable and its pieces which run under Open MVS (UNIX System Services or USS)

• The IMS Segment edit/compression exit routine for encrypt/decrypt functions (PTYPIMS module)

• The IMS Segment edit/compression exit routine for compress + encrypt/decrypt + decompress functions (PTYPIMSC module)

The IMS Protectors for z/OS support user access through multiple secondary authorization IDs (RACF group name). IMS Protector
grant access to a user, defined in a policy created using ESA by matching the Policy role user with the system user. If match is not
found, then the Policy role user will try to match with RACF group name.

Note: Before you install the IMS portions of the product, you should install and customize the Protegrity for z/OS Cryptographic Servers. For
more information, refer to the section Installing the z/OS Product.

8.1 Installing and Configuring the IMS Protector on Mainframe z/OS
The following sections explain the installation of IMS Protector Solution on Mainframe z/OS. It provides a high-level setup
overview as well as post-installation verification steps.

8.1.1 Setting Up the IMS Protector

The following procedure explains how to install the IMS Protector on the Mainframe z/OS.

Protegrity z/OS Protector Guide 7.0.1 The IMS Solutions on Mainframe z/OS

Confidential 112

To setup the IMS Protector:

1. Install the PEP server. For more information about installing the PEP server, refer to the section Installing the PEP Server.

2. Install the Protegrity Cryptographic Services. For more information about installing the Cryptographic Services, refer to the
section Installing the Cryptographic Server.

3. Install the IMS Protector.

The files PTYxxxx.IMSAUTH, PTYxxxx.IMSLOAD, and PTYxxxx.IMSSAMP are restored using LODxxxI.jcl. For
more information, refer to the section Prerequisites for Installing the z/OS Product.

IMSAUTH Load module library, needs to be PDS

IMSLOAD Load module library

IMSSAMP RECFM F LRECL 80 JCL type library, needs to be PDS

As per the attributes for the IMS exit routine, IMSAUTH must be APF authorized, or the load modules included must be
copied to authorized libraries.

4. Activate the Protegrity Data Security Platform. For more information about activating the Protegrity Data Security Platform,
refer to the section Activating Protegrity Data Security Platform.

5. Deploy a test policy. For more information about deploying a test policy, refer to the section Deploying a Test Policy.

6. Verify the PEP server installation. For more information about verifying the installation of the PEP server, refer to the section
Verifying the Installation.

7. Verify the protector installation. For more information about verifying the installation of the IMS Protector on z/OS, refer to
the section Verifying the IMS Protector Installation.

8.1.2 Verifying the IMS Protector Installation

This section describes the procedure to verify the IMS Protector installation.

Before you begin
Start the PTYCSRV procedure to start the Protegrity Cryptographic Services Manager Task. This starts the other servers. Use
the procedure customized during installation. All services can be stopped by stopping the PTYCSRV procedure from an operator
console.

To verify installation:

1. Submit the job PTYxxxx.IMSSAMP(PTYITEST) to generate the sample test Segment edit/compression exit routine,
PTYIC001.

2. Re-generate the DBD with the Segment edit/compression exit routine specified in COMPRTN parameter.

3. Generate PSB (one for each LOAD and SELECT) for DBD created in step 2.

4. Run the job PTYxxxx.IMSSAMP(PTYPIM1) to load data into IMS segments.

5. Use File Manager to see the encrypted data.

6. Run the job PTYxxxx.IMSSAMP (PTYPIM2) to select and display data in output file.

8.2 Segment Edit/Compression Exit Routine
The Segment Edit/Compression exit routine allows you to encode/decode, edit, or compress the data portion of a segment.

Protegrity z/OS Protector Guide 7.0.1 The IMS Solutions on Mainframe z/OS

Confidential 113

The following database types support the Segment Edit/Compression exit routine:

• HISAM

• HDAM

• PHDAM

• HIDAM

• PHIDAM

Two types of segment manipulation are possible using the Segment Edit/Compression exit routine:

• Data compression — movement or compression of data within a segment in a manner that does not alter the content or
position of the key field. Typically, this involves compression of data from the end of the key field to the end of the segment.
When a fixed-length segment is compressed, a 2-byte field must be added to the beginning of the data portion of the segment
by the user data compression routine. This field is used by IMS to determine secondary storage requirements and is the
only time that the location of the key field can be altered. The segment size field of a variable-length segment cannot be
compressed but must be updated to reflect the length of the compressed segment.

• Key compression — movement or compression of any data within a segment in a manner that can change the relative
position, value, or length of the key field and any other fields except the size field. The segment size field of a variable-length
segment must be updated by the compression routine to reflect the length of the compressed segment.

Note: You should specify the use of the Segment Edit/Compression exit routine when you define a segment in the DBD.

8.2.1 Specifying the Segment Edit/Compression Exit Routine

This section defines the use of Segment Edit/Compression exit routine for IMS Protector.

To specify the use of the Segment Edit/Compression exit routine, use the “COMPRTN= keyword” of the SEGM statement in the
DBD.

DBD NAME=LIBDBDC,ACCESS=(HDAM),RMNAME=(DFSHDC40,1,5,200)
DATASET DD1=INDD
SEGM NAME=LIBSEG,PARENT=0,BYTES=30,COMPRTN=(PTYIC001,KEY)
FIELD NAME=(LIBID,SEQ,U),BYTES=5,START=1,TYPE=C
FIELD NAME=ISSDATE,BYTES=10,START=6,TYPE=C
FIELD NAME=RETDATE,BYTES=10,START=16,TYPE=C
FIELD NAME=STUID,BYTES=5,START=26,TYPE=C
DBDGEN
FINISH
END

8.2.2 IMS Protector Restrictions and Limitations

This section lists the restrictions and limitations of the IMS Protector.

1. The DFSRRC00 routine is compiled in authorized mode and provided with the product, which needs to reside in authorized
library. The DBD and PSB libraries should also should be authorized libraries.

2. Only the CUSP encryption logics are supported.

3. The Segment Edit/Compression exit routine cannot be defined in a logical database DBD.

4. Any segment type can be edited or compressed (using either data or key compression) if the segment is:

• Not a logical child

• Not in an HSAM, SHISAM, or index database

5. Data compression is allowed but key compression is not allowed when the segment is:

• A root segment in a HISAM database

• A segment in a DEDB database

Protegrity z/OS Protector Guide 7.0.1 The IMS Solutions on Mainframe z/OS

Confidential 114

6. For Variable segments, using segment edit/compression exit routine, Maximum length should be increased by 1 byte to hold
the flag value.

7. On error, the routine will return to IMS with Abend code 2990 (ABENDU2990) and corresponding return code and reason
code in Register 15. Unhandled processing error will result in abend 840.

8. When using the IMS Segment Edit/Compression exit routine with the HISAM database, the Overflow file record size should
be increased to accommodate the intermediate addition of the child segments.

8.2.3 Usage of Compression and Decompression Facility

The IMS segment edit/compression exit routine allows compression and decompression of customer data.

The customer site can choose to compress the data, in addition to encryption, while using Protegrity's segment edit/compression
exit routine. During LOAD, INSERT, and UPDATE, the data will be compressed first, using the MVS standard compression
macro CSRCESRV, and then the compressed data would be encrypted. During UNLOAD and SELECT, the data will be
decrypted first, and then the decrypted data will be decompressed using the MVS standard compression macro CSRCESRV.

The CSRCESRV exploits the occurrence of repeated characters in a data stream. The encoded data contains a combination of
symbols that represent strings of repeated characters and the original characters that are not repeated.

For more details on MVS standard compression macro CSRCESRV operations, refer to the z/OS MVS Programming: Assembler
Services Guide.

To compress the data using Protegrity’s segment edit/compression exit routine, the site must configure the parameter
"COMPRESS=Y" in the customized segment edit/compression exit routine that is generated with the PTYITEST sample job. The
default value is "COMPRESS=N".

Note: With non-compressible data as input, Protegrity’s segment edit/compression exit routine, will not result in error, rather encrypt the
original input data as is.

Note:

Samples to explain how data protection and unprotection can be performed during LOAD/INSERT/UPDATE and UNLOAD/SELECT
respectively, using IMS Segment Exit/Compression Routines are mentioned in the section Appendix H- Sample Code for the IMS
Protector Mainframe.

8.2.4 Return and Reason Codes

The IMS segment edit/compression exit routine becomes a part of the IMS control or batch region, any abnormal termination of
this routine terminates the entire IMS region. Any user-written segment edit/compression exit routine should return to IMS with
an abend code and a reason code instead of initiating a standard abend.

Protegrity IMS Protector should return to IMS with Abend Code 2990. The return and reason codes are provided in register 15.

The following convention is used:

• the first 2 bytes of register 15 should have “PY” to identify that the abend is generated by Protegrity IMS protector

• the 3rd byte contains the return code

• the 4th byte contains the reason code

The IMS segment edit/compression exit routine return codes and reason codes have a 4 bytes binary format. The following table
describes these codes.

Protegrity z/OS Protector Guide 7.0.1 The IMS Solutions on Mainframe z/OS

Confidential 115

Table 8-1: Return and Reason Codes

Error Return Code Dec. Reason Code Dec. Return and Reason Code

Access denied 4 6 X’D7E80406’

Access denied - Unknown user 4 1 X’D7E80401’

Access denied - Unknown data
element

4 2 X’D7E80402’

Access denied - User has no
privileges for data element

4 3 X’D7E80403’

Access denied - User has no
privileges for data element for the
current time period

4 4 X’D7E80404’

Function address null 12 10 X’D7E80C0A’

Clear text length address null 12 11 X’D7E80C0B’

Clear text address null 12 12 X’D7E80C0C’

Cipher text length address null 12 13 X’D7E80C0D’

Cipher text address null 12 14 X’D7E80C0E’

Data element address null 12 15 X’D7E80C0F’

Data Protector not active 12 17 X’D7E80C11’

Data Protector not active 12 23 X’D7E80C17’

Product not active 12 30 X’D7E80C1E’

Invalid function code 12 16 X’D7E80C10’

Policy not ready 12 31 X’D7E80C1F’

Clear text length zero 12 41 X’D7E80C29’

Cipher text length zero 12 42 X’D7E80C2A’

Cipher text length less than clear
text length

12 43 X’D7E80C2B’

Peps policy locked 12 44 X’D7E80C2C’

Protegrity z/OS Protector Guide 7.0.1 The IMS Solutions on Mainframe z/OS

Confidential 116

Error Return Code Dec. Reason Code Dec. Return and Reason Code

Query null data element 12 45 X’D7E80C2D’

Invalid checksum 12 47 X’D7E80C2F’

Invalid padding 12 48 X’D7E80C30’

Invalid IV 12 49 X’D7E80C31’

Cipher text area too small 12 50 X’D7E80C32’

Plain text area too small 12 51 X’D7E80C33’

Checksum validation failure 12 52 X’D7E80C34’

Unsupported algorithm 12 88 X’D7E80C58’

Unknown algorithm 12 93 X’D7E80C5D’

Default data element not supported 12 94 X’D7E80C5E’

Abend percolated 12 251 X’D7E80CFB’

Input length for compression less
than 2

12 61 X’D7E80C43’

Input length for expansion less than
2

12 62 X’D7E80C44’

Expansion service error 12 63 X’D7E80C45’

Sequence Field not in Segment 12 65 X’D7E80C47’

Segment length is negative 12 66 X’D7E80C48’

8.3 PTYPSLL/PTYPSLI to protect/unprotect IMS data
In addition to DBDEXITs, z/OS Stateless Application Protector, PTYPSLL and PTYPSLI, can be used to protect/unprotect the
data in IMS database.

You should have the libraries of z/OS Application Protector. For more information about Application Protector on z/OS, refer to
the section Application Protector on Mainframe z/OS.

Note:

Samples to explain how IMS data can be protected and unprotected using zOS Application protector, PTYPSLL/PTYPSLI, are mentioned
in the section Appendix E- z/OS Application Protector Samples.

Protegrity z/OS Protector Guide 7.0.1 The IMS Solutions on Mainframe z/OS

Confidential 117

Appendix

A
Uploading Certificates from ESA to z/OS Manually
This section describes how to upload certificates from the ESA to z/OS manually.

To upload certificates from the ESA to z/OS manually:

1. Download the .tar file of certificates from the following link to your local machine, using the ESA admin credentials.
https://<ESA External IP>:8443/dps/v1/deployment/certificates

2. Run the following FTP commands to manually upload the .tar files to z/OS:

cd <path where tar file is downloaded> <- path on your PC
ftp 1.1.1.1 <- z/OS IP address or host name
… <- provide TSO userid and password as
prompted
cd <install dir>/defiance_dps/data <- install directory path
bin <- transfer files in binary mode
put *.tar tar file of certificates
quit

3. In z/OS Open MVS, the .tar files of the certificates are available in the <install dir>/defiance_dps/data
directory. Run the following commands to untar the certificate files:

tar xvf *.tar <- untar the certificates
 <- Files after untar:
 CA.pem, cert.jks, cert.key,
cert.pem, certkeyup.bin
iconv -f ISO8859-1 -t IBM-1047 CA.pem > CA.pem.conv <- Converting PEM certificates
iconv -f ISO8859-1 -t IBM-1047 cert.pem > cert.pem.conv
iconv -f ISO8859-1 -t IBM-1047 cert.key > cert.key.conv
mv CA.pem.conv CA.pem <- moving converted PEM
certificates to ../data folder
mv cert.pem.conv cert.pem
mv cert.key.conv cert.key

Note: Codepage mentioned in PEM certificates conversion commands, can be specified as per client requirement.

Protegrity z/OS Protector Guide 7.0.1 Uploading Certificates from ESA to z/OS Manually

Confidential 118

Appendix

B
Sample Codes for Automated Installation

10.1 Sample JCL to Execute the Script to Update the pepserver.cfg file

10.2 Sample Code to use the BPXBATCH to Install the PEP Server

10.3 Details on the JMVS jcl to Install the Cryptographic Server

This section contains the following sample codes for automated installation.

10.1 Sample JCL to Execute the Script to Update the pepserver.cfg file
The following sample JCL can be used to update the parameters in the pepserver.cfg file.

//PTYRCFG JOB ,MSGCLASS=H,NOTIFY=&SYSUID
//JCLREXX EXEC PGM=IKJEFT01
//* LOADLIB FOR REXX
//SYSEXEC DD DSN=PTYBLD.STAGE701.CNTL,DISP=SHR
//* ISPF LIBRARIES
//ISPPROF DD DSN=&&ISPPROF,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(CYL,(1,1,10),RLSE),
// RECFM=FB,LRECL=80
//ISPPLIB DD DISP=SHR,DSN=USER.ISPPLIB
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSLIB
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//ISPLOG DD DUMMY
//*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
 ISPSTART CMD(PTYXCFG <Input file> <Loadlib>)

The ISPSTART command requires the following three parameters to be passed.

PTYXCFG REXX script to update the parameters in pepserver.cfg file. The script is provided in PTYxxxx.SPTYSAMP
files.

Input file Input file which mentions the changes to be done in pepserver.cfg file. Sample file (PTYICFG) is provided
in PTYxxxx.SPTYSAMP. For more details, refer the following note.

Protegrity z/OS Protector Guide 7.0.1 Sample Codes for Automated Installation

Confidential 119

Loadlib Loadlib contains the executable for assembler program (PTYPCFG). The loadlib is provided in the
PTYxxxx.SPTYAUTH library.

Note: Details of the Sample Input file.

dsn = /opt/protegrity/dps6522/defiance_dps/data/pepserver.cfg
level = ALL
communicationid = 1

dsn The complete path for the pepserver.cfg file should be updated. This is mandatory.

parameters Mention the parameters to be updated in pepserver.cfg file, in different rows.

10.2 Sample Code to use the BPXBATCH to Install the PEP Server
The following sample JCL can be used to install the PEP Server.

//PEPINST JOB ,MSGCLASS=H,NOTIFY=&SYSUID
//*
//*--
//* PEPINST - INSTALL THE PROTEGRITY POLICY ENFORCEMENT POINT SERVER
//*
//*--
//*
// SET HLQ=%ptyhlq --> FROM BUILD
// SET INSTLDIR='/usr/local/pty'
// SET INPPATH='/usr/local/pty/dps700/pepserver.install.input'
//CHKDISK EXEC PGM=IKJEFT01,
// PARM='%RXDSKSPC &INPPATH'
//SYSEXEC DD DSN=&HLQ..SPTYSAMP,DISP=SHR
//*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
//*
//PEPINST EXEC PGM=BPXBATCH,REGION=0M,TIME=NOLIMIT,COND=(4,LE),
// PARM='sh'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DISP=SHR,DSN=&HLQ..SPTYSAMP(PTY$ENV)
//STDIN DD PATHDISP=KEEP,PATHOPTS=(ORDONLY),
// PATH='&INSTLDIR/dps700/pepserver.install.input'
//*

10.2 Sample Code of pepserver.install.input

/usr/local/pty/dps700/PepServerSetup_zOS_Mainframe_7.0.1.n.sh
y
/opt/protegrity/dps700
10.10.3.104

10.3 Details on the JMVS jcl to Install the Cryptographic Server
This section provides details about the JMVS jcl on how to install the Cryptographic Server.

The following are the members added to PTYxxxx.SPTYSAMP:

JMVS JCL has two steps –

Protegrity z/OS Protector Guide 7.0.1 Sample Codes for Automated Installation

Confidential 120

JCREATE updates parameters in started tasks and parameter file;

JCOPY copies them to procedure library (USER.PROCLIB) and auth.SPTYSAMP

JCREATE uses RXCREATE and JCOPY uses IDCAMS utility.

RXCREATE REXX script to update parameters in started tasks and PTYPARM file

SKELSPEP Skeleton jcl used in RXCREATE for updating parameters in PTYSPEP task

SKELPPEP Skeleton jcl used in RXCREATE for updating parameters in PTYPPEP task

SKELCSRV Skeleton jcl used in RXCREATE for updating parameters in PTYCSRV task

SKELPARM Skeleton jcl used in RXCREATE for updating parameters in PTYPARM file

Note: Nomenclature used - Members starting with RX are the REXX scripts, J are the JCLs and SKEL are the skeleton JCLs used in
REXX scripts.

In the JMVS, SET statements need to be customized. Also, parameters need to be mentioned in ISPSTART in SYSTSIN step of JCREATE.

The JCREATE will create the jobs and put them in PTYxxxx.SPTYSAMP with names as PTYSPEPS, PTYPPEPS, PTYCSRV, and
PTYPARM.

The JCOPY will copy the jobs created in PTYxxxx.SPTYSAMP to procedure library, USER.PROCLIB.

Protegrity z/OS Protector Guide 7.0.1 Sample Codes for Automated Installation

Confidential 121

Appendix

C
Sample Code for the PTYPARM Configuration file
This section contains sample code for the PTYPARM configuration file.

The contents of the ptyparm configuration file that is used for customizing the Cryptographic Servers on the Mainframe z/OS
platform, is listed below.

Protegrity Defiance Data Protection System (DPS)
Data Protector Startup Parameters

 Syntax rules: 1) Blank lines are ignored.
 2) Comment lines indicated by * or a blank in column 1.
 3) Text starting in column 1 on each non-comment line
 constitutes the parameter specification and is
 delimited by the first blank character. Any text
 after the first blank is considered a comment.
 4) Multiple parameters may be specified on the same
 line by separating them with commas with no
 intervening blanks.

START=AUTO Startup type: AUTO | WARM | COLD

COMMID=44 Communication id used by the PEP Server This value
 must match the value specified by the communicationid
 parameter in the PEP Server configuration file,
 pepserver.cfg.

NOCST New default is no CST
* CSTPROC=PTYCST Cryptographic Service Task (CST) startup procedure

PEPSPROC=PTYSPEPS PEP Server (PEPS) startup procedure

PEPPPROC=PTYPPEPS PEP Server shutdown procedure

LOGQBS=10 Log buffer queue block size in megabytes
LOGMQB=123 Maximum allowed log buffer queue blocks
LOGRCDI=10 LOG quiesce record count display interval in seconds
*
* Next three values deal with moving log records from MVS to PepServer.
* LOGSHMPCT is the maximum percent MVS protectors should fill
* logging shared memory. Can be 100% if UDFs and XC
* are not used.
* LOGMAXLOCKTIME While PTYCSRV is moving records from the MVS side
* protectors into shared memory, PepServer cannot send
* log records to ESA and UDFs/XC cannot add log records
* Generally it is safeest to leave this value alone
* LOGMAXDELAY A sub-task of PTYCSRV moves the records into shared
* memory for PepServer. This is the maximum timer
* delay for that sub-task to wait before trying to

Protegrity z/OS Protector Guide 7.0.1 Sample Code for the PTYPARM Configuration file

Confidential 122

* move more log records into shared memory.
*
LOGSHMPCT=15 Maximum to fill log shared memory at one pass
LOGMAXLOCKTIME=50 Time in milliseconds to lock log shared memory
LOGMAXDELAY=200 Maximum delay before moving log records in ms

PEPSTIME=240 Time to wait for PEP Server startup in seconds

USERNAME=(USERID,GROUPNAME) Use RACF group name if userid <> DPS user
*USERNAME=USERID Use RACF userid only; do not use group name
*USERNAME=GROUPNAME Use RACF group name only; do not use userid

FRCODEPG=01047 Unicode Conversion service - From Codepage
TOCODEPG=00923 Unicode Conversion service - To Codepage

DB2AUTHIDLVL=1 Number of DB2 Secondary AUTHIDs to check

PEPLOGPATH=<install dir>/defiance_dps/data/pepserver.log Path for pepserver.log
FILE_CONTFAILREC=NO Do not continue in case of an error

The LOGQBS is the size of the buffer that we do a STORAGE macro for. The LOGMQB is the number of those buffers that we will
get in total. So, in the sample case we will get 210MB buffers at startup and we will get up to an additional 121 buffers for a total
of 1,230 MBs of log buffers. The values can only be changed at PTYCSRV startup and cannot be dynamically changed. However, “f
ptycsrv,d log” will show how many buffers are in use.

Default use is that the Protegrity data policy will be applied using the External Security Manager USERID first. If the requesting TCB
user is not in the policy, then the primary GROUPNAME assigned by the ESM will be tried. If neither is in the policy, then the attempt
to do ciphering will be rejected. The site can modify this default by changing the USERNAME parameter to only user USERID or
only use GROUPNAME or to user GROUPNAME first and USERID if the GROUPNAME is not in the policy.

The PTYCSRV started task needs to wait for the PEP Server to make the policy available. Depending on several factors including the
Open MVS priority and the size of the policy, this can take several seconds. The PEPSTIME allows the site to change how long the
PTYCSRV will wait before cancelling itself because the PEP Server has not made the policy available.

Unicode conversion services support has been provided for Token data elements. The parameter FRCODEPG (From Codepage)
specifies the System codepage of the site and should be changed by the System administrator while setting up PTYPARM file. The
parameter TOCODEPG (To Codepage) is to be used by token conversion routines, the default value supported is Codepage: CCSID
923 Name - ISO 8859-15 ASCII.

Note: We do not suggest sites to change the TOCODEPG parameter as this can result in discrepancy between the tokenized values returned by
Database protectors Fieldproc, Editproc and UDF's.

The DB2AUTHIDLVL parameter is used to identify the number of secondary authorization IDs that must be matched with the DB2
Database protectors. The default value for this parameter is 1, which will invoke default behavior of matching Policy role user with
DB2 User ID. If the value is not matched, then the Policy role user will be matched with only one DB2 secondary authorization ID.
For example, if the site changes the value of this parameter to 5, then Policy role user will be matched with DB2 User ID. If the value
is not matched, then the Policy role user will be matched with first 5 occurrences of DB2 secondary authorization ID.

The PEPLOGPATH parameter is used to provide the path for pepserver.log file. Using this parameter, messages from the
pepserver.log file with logging level= WARNING/ERROR/SEVERE are displayed in system logs during PTYCSRV start-up.
This is an optional parameter.

Note: It is recommended to use the PEPLOGPATH parameter when append=no is set in the logging configuration section of the
pepserver.cfg file, else the WARNING/ERROR/SEVERE messages from the previous PTYCSRV executions will be captured in
the system logs.

Protegrity z/OS Protector Guide 7.0.1 Sample Code for the PTYPARM Configuration file

Confidential 123

The FILE_CONTFAILREC parameter is added to configure the setting that displays the fail record information in the job log. The
default value is FILE_CONTFAILREC=NO,that does not allow processing of subsequent records after a failed record, whereas,
FILE_CONTFAILREC=YES allows the processing of subsequent records after a failed record. This is an optional parameter.

Protegrity z/OS Protector Guide 7.0.1 Sample Code for the PTYPARM Configuration file

Confidential 124

Appendix

D
Sample RACF Setup for the Started tasks
This section contains sample code for RACF setup for the started tasks.

The following sample code is a setup for the RACF permissions in the following started tasks:

• Protegrity started tasks for the Cryptographic Services Manager

• PEP Server started tasks (starting and stopping the PEP Server)

Note: The setup in the sample code below are suggestions only

AG PPPSGRP SUPGROUP(SYS1) OWNER(SECURITY)
ALG PPPSGRP DATA('Protegrity Protection Server Group')
ALG PPPSGRP OMVS(GID(0000992058))

AU PPPS DFLTGRP(PPPSGRP) OWNER(SECURITY)
ALU PPPS NOPASSWORD NOOIDCARD
ALU PPPS NAME('Protegrity Protection Server')
ALU PPPS DATA('Protegrity Protection Server')
ALU PPPS OMVS(UID(0000992058) +
 HOME('/opt/protegrity') +
 PROGRAM('/bin/sh'))

CO PPPS GROUP(PPPSGRP) OWNER(SECURITY)

AD 'SYS6.PPPS.*.**' GEN UACC(NONE) OWNER(SECURITY)
ALD 'SYS6.PPPS.*.**' GEN AUDIT(FAILURES(READ))
PE 'SYS6.PPPS.*.**' ID(*) ACCESS(READ) GEN
PE 'SYS6.PPPS.*.**' ID(TSUP) ACCESS(ALTER) GEN
PE 'SYS6.PPPS.*.**' ID(PPPSGRP) ACCESS(ALTER) GEN

AD 'SYS3.PPPS.*.**' GEN UACC(NONE) OWNER(SECURITY)
ALD 'SYS3.PPPS.*.**' GEN AUDIT(FAILURES(READ))
PE 'SYS3.PPPS.*.**' ID(*) ACCESS(READ) GEN
PE 'SYS3.PPPS.*.**' ID(PPPSGRP) ACCESS(READ) GEN
PE 'SYS3.PPPS.*.**' ID(TSUP) ACCESS(ALTER) GEN
SETROPTS GENERIC (DATASET) REFRESH

PE BPX.DAEMON CLASS(FACILITY) ID(PPPS) ACCESS(READ)
PE BPX.SUPERUSER CLASS(FACILITY) ID(PPPS) ACCESS(READ)
SETROPTS RACLIST (FACILITY) REFRESH

RDEF STARTED PTYCSRV.* UACC(NONE) OWNER(SECURITY)
RALT STARTED PTYCSRV.* AUDIT(FAILURES(READ))
RALT STARTED PTYCSRV.* STDATA(USER(PPPS) TRUSTED(NO) +
 PRIVILEGED(NO) TRACE(NO))

Protegrity z/OS Protector Guide 7.0.1 Sample RACF Setup for the Started tasks

Confidential 125

RDEF STARTED PTYPPEPS.* UACC(NONE) OWNER(SECURITY)
RALT STARTED PTYPPEPS.* AUDIT(FAILURES(READ))
RALT STARTED PTYPPEPS.* STDATA(USER(PPPS) TRUSTED(NO) +
 PRIVILEGED(NO) TRACE(NO))

RDEF STARTED PTYSPEPS.* UACC(NONE) OWNER(SECURITY)
RALT STARTED PTYSPEPS.* AUDIT(FAILURES(READ))
RALT STARTED PTYSPEPS.* STDATA(USER(PPPS) TRUSTED(NO) +
 PRIVILEGED(NO) TRACE(NO))

SETROPTS RACLIST (STARTED) REFRESH

Protegrity z/OS Protector Guide 7.0.1 Sample RACF Setup for the Started tasks

Confidential 126

Appendix

E
z/OS Application Protector Samples

13.1 Test Data

13.2 Copybooks

13.3 Compilation of programs

13.4 Interfaces

13.5 Detailed Descriptions of COBOL programs and JCLs

Several sample programs are available to show how to use the various interface programs of the Application Protector. This Appendix
documents the interface and the associated sample programs available.

Most of the samples are written in COBOL. The samples are designed to be compiled by any level of the z/OS IBM COBOL compiler.
They are not reliant upon having any specific level of COBOL. If you compile the samples of the IBM COBOL, version 5 or newer,
then the load library needs to be a PDS-E, and not PDS. The PTYnnnnn.APSLOD is the PDS-E load library.

The sample programs are in the PTYnnnnn.APSAMP library and the associated JCLs are in the PTYnnnnn.APSCNTL library. The
JCLs with PTYJ as prefix, are COMPILE JCLs, and the JCLs with PTYR as prefix, are RUN JCLs.

13.1 Test Data
The following are some test data files that are included in the PTYnnnnn.APSAMP library in XMIT format. Use the TSO
RECEIVE command to reload the data.

1. The APDATA1 contains a few simple records with different character datatypes (alpha, numeric, and alpha-numeric) that
allows you to explore the different token algorithms.

2. The CFUDATAF contains approximately one thousand records with 16-character numeric data, similar to credit card
numbers, last names, and first names.

3. The APDATAIM contains a few simple records with segments defined as per the sample IMS database. All the IMS samples
are available with respect to the sample library database.

13.2 Copybooks
The following copybooks are included in the PTYnnnnn.APSAMP library:

• PTYCCSIP – to be included in the samples that are run for PTYPSLL or PTYPSLI.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 127

• PTYCCXIP – to be included in the samples that are run for PTYPCXL or PTYPCXI.

• PTYIMINP – to be included in the samples that are run for IMS data with PTYPSLL and PTYPCXL.

• PTYIMPCB – to be included in the samples that are run for IMS data with PTYPSLL and PTYPCXL.

13.3 Compilation of programs
The following compile JCLs are available:

• PTYCMPL – This will compile all the non-IMS COBOL programs.

For more information about the IMS sample compilations, refer to the table F-1: Sample Programs.

• Each program(s) has its own compile JCL, as mentioned in the table Sample Programs.

• The PTYJIMS1 will compile all the IMS sample programs. These samples are for using the Application Protector with IMS
data, and not samples for the Protegrity IMS Protector. For IMS samples, the DBDs and PSBs need to be generated and load
modules to be kept in authorized PDS.

a. The sample DBD, PTYnnnnn.APSAMP(PTYIMDBD) is generated using the sample JCL,
PTYnnnnn.APSCNTL(PTYGNDBD). The compiled DBD should be available in the authorized PDS.

b. The sample PSBs, PTYnnnnn.APSAMP(PTYIMPSB) for INSERT and PTYnnnnn.APSAMP(PTYIMPSS) for SELECT,
are generated using the sample JCL, PTYnnnnn.APSCNTL(PTYGNPSB). The compiled PSBs should be available in the
authorized PDS.

The following table describes the sample programs and corresponding COMPILE and RUN JCLs.

Table E-1: Sample Programs

No. COBOL
Program

COMPILE JCL RUN JCL Short Description

1 ENCDEC PTYJEDC PTYREDC Protect and unprotect using PTYPSLL or PTYPSLI

2 ENCDECL1 PTYJEDL1 PTYREDL1 Protect and unprotect using PTYPSLL or PTYPSLI

3 ENCDECX1 PTYJEDX1 PTYREDX1 Protect and unprotect using PTYPCXL or PTYPCXI

4 PTYPAP1 PTYJAP1 PTYRAP1 Protect data (PTYPSLL or PTYPSLI) and write it to VSAM file

5 PTYPAP2 Unprotect the protected VSAM file (PTYPSLL or PTYPSLI) and write the
unprotected data into a sequential file

6 PTYPAX1 PTYJAX1 PTYRAX1 Only protection using PTYPCXL or PTYPCXI

7 PTYPAX2 Only unprotection using PTYPCXL or PTYPCXI

8 PTYPSL1 PTYJSL1 PTYRSL1 Only protection using PTYPSLL or PTYPSLI

9 PTYPSL2 Only unprotection using PTYPSLL or PTYPSLI

10 PTYQCKID PTYJQCK PTYRQCK Query Current keyID; PTYPCXL or PTYPCXI

11 PTYQDDES PTYJQDS PTYRQDS Query Default data element; PTYPSLL or PTYPSLI

12 PTYQDDEX PTYJQDX PTYRQDX Query Default data element; PTYPCXL or PTYPCXI

13 PTYQDKID PTYJQDK PTYRQDK Fetch Data keyID; PTYPCXL or PTYPCXI

14 PTYVSAM PTYJVSM PTYRVSM Read VSAM FILE and write protected data to another VSAM file;
PTYPSLL or PTYPSLI

15 PTYVSAM1 PTYJVSM1 PTYRVSM1 Protect and unprotect VSAM files (not PRI-KEY) using length preserving
algorithms; PTYPSLL or PTYPSLI

16 PTYVSAM2 PTYJVSM1 PTYRVSM2 Protect and unprotect VSAM files (not PRI-KEY) using non-length
preserving algorithms; PTYPSLL or PTYPSLI

17 PTYVSAM3 PTYJVSM1 PTYRVSM3 Write protected data (including PRI-KEY) in VSAM file using length
preserving algorithms; PTYPSLL ot PTYPSLI

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 128

No. COBOL
Program

COMPILE JCL RUN JCL Short Description

18 PTYVSAM4 Unprotect protected data (including PRI-KEY) in VSAM file using length
preserving algorithms; PTYPSLL or PTYPSLI

19 PTYIMS1 PTYJIMS1 PTYRIMS1 Protect data (PTYPSLL or PTYPSLI) before inserting to IMS database

20 PTYIMS2 Unprotect data (PTYPSLL or PTYPSLI) after selecting data from IMS
database

21 PTYIMS3 PTYRIMS2 Protect data (PTYPCXL or PTYPCXI) before inserting to IMS database

22 PTYIMS4 Unprotect data (PTYPCXL or PTYPCXI) after selecting data from IMS
database

23 PTYSLLDB PTYJSLDB PTYRSLDB Protects the data using PTYPSLL or PTYPSLI before inserting the
protected data into DB2 table.

Unprotects the data into a file using PTYPSLL or PTYPSLI after selecting
the protected data from DB2 tables.

24 PTYPSC1 PTYJSC1 PTYRSC1 PTYPSC1 shows how to use the alternate user ID variable.

25 PTYPSEIV PTYJEDL1 PTYRSEIV Protect and unprotect with support of external IV parameter using
PTYPSLL or PTYPSLI.

26 PTYPCEIV PTYJEDL1 PTYRCEIV Protect and unprotect with support of external IV parameter using
PTYPCXL or PTYPCXI.

13.4 Interfaces
There are two types of interfaces. Each type includes the following two interfaces:

• A Language Environment (LE) capable interface that utilizes LE Macros or functions to get memory, etc.

• A non-LE interface that uses the operating system capabilities for memory and other purposes.

The two interfaces have the same calling sequence and parameters. They may be used interchangeably just by changing the name
of the program called. The non-LE interface can be called by an LE program, but it is slightly less efficient than the LE capable
version, when called by a LE program.

For more information about the interfaces, refer to the sections Stateless Interfaces (APIs): PTYPSLI, PTYPSLL, and PTYPSLC
and Stateful Interfaces: PTYPCXI and PTYPCXL.

The following are the interfaces.

1. Stateless Interfaces: The PTYPSLL and PTYPSLI interfaces are stateless. Each call is atomic. The entire transaction is
processed before returning to the caller. The protection or unprotection is performed on the data and an audit record is
generated before the return. The PTYPSLL interface is Language Environment (LE) capable and it uses LE functions to get
its dynamic storage. The PTYPSLI interface is LE tolerant. It may be called from LE programs. The PTYPSLI interface uses
assembler MACROs to get its dynamic storage.

2. Stateful Interfaces: The PTYPCXL and PTYPCXI interfaces are stateful. These are called first to create a session that causes
a control block to be allocated and a handle to be returned to the caller. A part of this session creation turns off successful
audit logging until the session is ended. Then one successful audit log of protect and one of unprotect are created giving a
count of the transactions. Each subsequent call then uses the handle to find the control block and do the requested operation.
At the end, a disconnect call is done to free the control block and cause the audit logs to be created. The PTYPCXL interface
is LE capable and the PTYPCXI interface is non-LE capable.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 129

13.5 Detailed Descriptions of COBOL programs and JCLs
All the programs accept the data element name from the SYSIN DD. All the JCLs have various sets to assign high-level
qualifiers so that multiple JCL statements do not need to be changed. The latest compiles of all the programs should be in
PTYxxxxx.APSLOD for non-IMS programs and the PTYxxxxx.APSAUTX (need to be APF-authorised) for IMS programs. The
COBOL compiler version 5.2.0 is used for the compiles.

13.5.1 ENCDEC

This ENCDEC COBOL program protects and unprotects 11 characters of data. It uses the CFUDATAF data file as input. Input
is DDNAME INDATA. The protected output is written to DDNAME CIPHERA and unprotected output is written to DDNAME
OUTDATA. The program in the same library uses PTYPSLL as its interface program. The ENCDEC accepts the data element
from the DDNAME SYSIN so that the program does not need to be recompiled just to change the data element name.

The following are the sample JCLs.

a. The PTYJEDC is the compile JCL. It uses COBOL V5R2, but the program will also compile with COBOL V4 or V6.

b. The PTYREDC is the run JCL. It creates the following output files:

• CIPHER

• CLEAR

The input and output files are printed. The input and CLEAR files are compared as the last job step. The compare step should
have a return code of zero showing that all records were equal.

13.5.2 ENCDECL1

This ENCDECL1 COBOL program is parameter driven. It uses the stateless interface by calling it dynamically instead of calling
statically. The parameters are passed through the COBOL ACCEPT verb and DDNAME SYSIN. Data element to be used, start
position, and length are part of the parameters. You need to check the beginning of the Procedure Division to see the parameters
and their order. The example runtime also shows the parameters. The ENCDECL1 uses the CFUDATAF input file.

The following are the sample JCLs.

a. The PTYJEDL1 is the compile JCL. The default is COBOL V5R2, but the program will also compile with COBOL V4 or V6.

b. The PTYREDL1 is the runtime JCL. As shipped, the PTYPSLL is the interface program specified in the parameters. There is
a print step for the input, cipher, and clear files. There is also a compare step for the input and clear files.

13.5.3 ENCDECX1

This ENCDECX1 COBOL program is parameter driven. It uses the stateful interface by calling it dynamically instead of calling
statically. The parameters are passed via the COBOL ACCEPT verb and DDNAME SYSIN. Data element to be used, start
position, and length are part of the parameters. You need to check the beginning of the Procedure Division to see the parameters
and their order. The example runtime also shows the parameters. The ENCDECX1 uses the CFUDATAF input file.

The following are the sample JCLs.

a. The PTYJEDX1 is the compile JCL. The default is COBOL V5R2, but the program will also compile with COBOL V4 or
V6.

b. The PTYREDX1 is the runtime JCL. As shipped, the PTYPCXL is the interface program specified in the parameters. There is
a print step for the input, cipher, and clear files. There is also a compare step for the input and clear files.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 130

13.5.4 PTYPAP1 and PTYPAP2

These PTYPAP1 and PTYPAP2 COBOL programs use the APDATA1 input file to build a VSAM file. The PTYPAP1 reads the
input and creates the protected VSAM file. The PTYPAP2 reads the VSAM file and creates a clear-text output file. Both the
programs use the PTYPSLI stateless interface. As written, the credit card number is protected.

The following are the sample JCLs.

a. The PTYJAP1 is the compile JCL. Both PTYPAP1 and PTYPAP2 are compiled by this JCL. Default is COBOL V5R2, but
the programs will also compile with COBOL v4 or v6.

b. The PTYRAP1 is the runtime JCL. The JCL has multiple steps. It defines the VSAM file using IDCAMS, runs PTYPAP1 to
load the VSAM file, and runs PTYPAP2 to create the clear file. The JCL then uses IDCAMS to print the three files (input,
VSAM, and clear) and compares the input and clear files.

13.5.5 PTYPAX1 and PTYPAX2

These PTYPAX1 and PTYPAX2 COBOL programs use CFUDATAF input file. The PTYPAX1 reads the input and creates the
protected file. The PTYPAX2 reads the protected file and creates a clear-text output file. Both the programs use any of the stateful
interfaces. The data element is accepted from the DDNAME SYSIN so that the program does not need to be recompiled just to
change the data element name.

The following are the sample JCLs.

a. The PTYJAX1 is the compile JCL. Both PTYPAX1 and PTYPAX2 are compiled by this JCL. The default is COBOL V5R2,
but the programs will also compile with COBOL v4 or v6.

b. The PTYRAX1 is the runtime JCL. The JCL has multiple steps. It creates the following output files:

• CIPHER

• CLEAR

The PTYPAX1 protects the input file and creates the CIPHER file. The PTYPAX2 unprotects the CIPHER file and writes it to
the CLEAR file. The input and both the output files are printed. The input and CLEAR files are compared as the last job step.
All the records should be equal.

13.5.6 PTYPSL1 and PTYPSL2

These PTYPSL1 and PTYPSL2 COBOL programs use CFUDATAF input file. The PTYPSL1 reads the input and creates the
protected file. The PTYPSL2 reads the protected file and creates a clear-text output file. Both the programs use any of the
stateless interfaces. The data element is accepted from the DDNAME SYSIN so that the program does not need to be recompiled
just to change the data element name.

The following are the JCLs.

a. The PTYJSL1 is the compile JCL. Both PTYPSL1 and PTYPSL2 are compiled by this JCL. The default is COBOL V5R2,
but the programs will also compile with COBOL v4 or v6.

b. The PTYRSL1 is the runtime JCL. The JCL has multiple steps. It creates the following output files:

• CIPHER

• CLEAR

The PTYPSL1 protects the input file and creates the CIPHER file. The PTYPSL2 unprotects the CIPHER file and writes it to
the CLEAR file. The input and both output files are printed. The input and the CLEAR files are compared as the last job step.
All the records should be equal.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 131

13.5.7 PTYQCKID

This PTYQCKID COBOL program queries the current KEYID and writes the fetched value in the CXI-Reason-Code. It uses any
of the stateful interfaces. The API and data element are accepted from DDNAME SYSIN so that the program does not need to be
recompiled just to change the data element name.

The following are the JCLs.

a. The PTYJQCK is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or v6.

b. The PTYRQCK is the runtime JCL. The API and data element are passed in SYSIN.

13.5.8 PTYQDDES

This PTYQDDES COBOL program queries the default data element and writes the fetched value in the CSI-Reason-Code. It
uses any of the stateless interfaces. The API and policy name are accepted from the DDNAME SYSIN so that the program does
not need to be recompiled just to change the data element name.

The following are the JCLs.

a. The PTYJQDS is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or v6.

b. The PTYRQDS is the runtime JCL. The API and policy name are passed in SYSIN.

13.5.9 PTYQDDEX

This PTYQDDEX COBOL program queries the default data element and writes the fetched value in the CXI-Reason-Code. It
uses any of the stateful interfaces. The API and policy name are accepted from the DDNAME SYSIN so that the program does
not need to be recompiled just to change the data element name.

The following are the JCLs.

a. The PTYJQDX is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or v6.

b. The PTYRQDX is the runtime JCL. The API and policy name are passed in SYSIN.

13.5.10 PTYQDKID

This PTYQDKID COBOL program queries the Data KEYID and writes the fetched value in the CXI-Reason-Code. It uses any of
the stateful interfaces. The API and data element are accepted from the DDNAME SYSIN so that the program does not need to
be recompiled just to change the data element name.

The following are the JCLs.

a. The PTYJQDK is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or v6.

b. The PTYRQDK is the runtime JCL. The API and data element are passed in SYSIN.

13.5.11 PTYVSAM

This PTYVSAM COBOL program protects the data in VSAM file and writes it to another VSAM file. It uses any of the stateless
interfaces. The data element is accepted from the DDNAME SYSIN so that the program does not need to be recompiled just to
change the data element name.

The following are the JCLs.

a. The PTYJVSM is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or v6.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 132

b. The PTYRVSM is the runtime JCL. The data is loaded from APDATA1 input file to INPVSAM file. The PTYVSAM protects
the INPVSAM and writes it to the CIPVSAM file. Since the VSAM primary key is also part of the protected data, so while
writing the protected data to CIPVSAM, the job can fail with Status-Code=21.

13.5.12 PTYVSAM1

This PTYVSAM1 COBOL program protects and unprotects the data in the VSAM file. The operations are done using the length
preserving tokens and the VSAM primary key is not protected. The program uses any of the stateless interfaces. The API and
data element are accepted from the DDNAME SYSIN so that the program does not need to be recompiled just to change the data
element name.

The following are the JCLs.

a. The PTYJVSM1 is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or
v6.

b. The PTYRVSM1 is the runtime JCL. The data is loaded from the APDATA1 input file to INPVSAM file. The PTYVSAM1
protects the INPVSAM and writes it to the CIPVSAM file and unprotects the CIPVSAM and writes it to OUTVSAM.

13.5.13 PTYVSAM2

This PTYVSAM2 COBOL program protects and unprotects the data in the VSAM file. The operations are done using the
non-length preserving tokens and the VSAM primary key is NOT protected. The program uses any of the stateless interfaces. The
API and the data element are accepted from the DDNAME SYSIN so that the program does not need to be recompiled just to
change the data element name.

The following are the JCLs.

a. The PTYJVSM1 is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or
v6.

b. The PTYRVSM2 is the runtime JCL. The data is loaded from the APDATA1 input file to the INPVSAM file. The
PTYVSAM2 protects the INPVSAM and writes it to the CIPVSAM file and unprotects the CIPVSAM and writes it to
OUTVSAM.

13.5.14 PTYVSAM3 and PTYVSAM4

The PTYVSAM3 program uses the CFUDATAF input file to be loaded in the input VSAM file. The PTYVSAM3 program
protects and the PTYVSAM4 program unprotects the data in the VSAM file. In the PTYVSAM3 program, the data is read and
protected in the INPUT procedure and after SORTing, the data is written to the CIPVSAM file. In the PTYVSAM4 program,
the protected data is read and unprotected in the INPUT procedure and after SORTing, it is written to the OUTVSAM file. The
operations are done using the length preserving tokens and the VSAM primary key is protected. The program uses any of the
stateless interfaces. The API and data element are accepted from the DDNAME SYSIN so that the program does not need to be
recompiled just to change the data element name.

The following are the JCLs.

a. The PTYJVSM1 is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or
v6.

b. The PTYRVSM3 is the runtime JCL. The PTYVSAM3 protects the CFUDATAF input file and writes the protected data in the
CIPVSAM. The PTYVSAM4 unprotects the CIPVSAM and writes the unprotected data in the OUTVSAM file.

13.5.15 PTYIMS1 and PTYIMS2

The PTYIMS1 uses the APDATAIM input file which when protected using the stateless interfaces, PTYPSLL or PTYPSLI, is
loaded or inserted to the IMS database. In the PTYIMS2, data is selected from the IMS database and the unprotected data is

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 133

send to SYSOUT. The API and data element are accepted from the DDNAME SYSIN so that the program does not need to be
recompiled just to change the data element name.

The following are the JCLs.

a. The PTYIMS2 should be in authorized PDS-E.

b. The PTYRIMS1 is the runtime JCL. The DBD and PSBs should be generated and available in the authorized PDS. The
PTYIMS1 protects the APDATAIM input file and loads or inserts the protected data in the IMS database. The PTYIMS2
selects the protected data from the IMS database and writes the unprotected data on SYSOUT. There are various SET
parameters which need to be provided before executing the JCL.

13.5.16 PTYIMS3 and PTYIMS4

The PTYIMS3 uses the APDATAIM input file which when protected using the stateful interfaces, PTYPCXL or PTYPCXI, is
LOADed or INSERTed to the IMS database. In the PTYIMS4, the data is SELECTed from the IMS database and the unprotected
data is send to SYSOUT. The API and data element are accepted from the DDNAME SYSIN so that the program does not need
to be recompiled just to change the data element name.

The following are the JCLs.

a. The PTYJIMS1 is the compile JCL. The default is COBOL V5R2, but the programs will also compile with COBOL v4 or v6.
Specific IMS library as per the IMS version should be mentioned. The load modules for PTYIMS3 and PTYIMS4 should be
in authorized PDS-E.

b. The PTYRIMS2 is the runtime JCL. The DBD and PSBs should be generated and available in the authorized PDS. The
PTYIMS3 protects the APDATAIM input file and inserts the protected data in the IMS database. The PTYIMS4 selects the
protected data from the IMS database and writes unprotected data on SYSOUT. There are various SET parameters which
needs to be provided before executing the JCL.

13.5.17 PTYSLLDB

The PTYSLLDB program protects the data using PTYPSLL or PTYPSLI, inserts the protected data in DB2 samples, select the
protected data from DB2 table and unprotect the table data into a file using PTYPSLL or PTYPSLI. Data-element is accepted
from DDNAME SYSIN so that the program does not need to be recompiled just to change the data element name. Additional
member PTYCRTBL contains the CREATE table query required in this COBOL program.

The following are the JCLs.

a. The PTYJSLDB is the compile JCL taking care of pre-compilation, compile, link-edit and bind the module. DBRMLIB and
other specific DB libraries are to be mentioned as per the DB version. Default for compile is COBOL V5R2, but the programs
will also compile with COBOL v4 or v6. The load modules for PTYSLLDB should be in PDS-E.

b. The PTYRSLDB is the runtime JCL. In addition to input and output files, DBRM library has to be mentioned. Data-element
is put from SYSIN step. There are various SET parameters which need to be provided before executing the JCL.

13.5.18 PTYPSC1

The PTYPSC1 program shows how to use the alternate ID interface PTYPSLC.

PTYPSLC works like PTYPSLL for storage.

An additional parameter is provided after the external IV parameters. This parameter provides an alternate user ID that will be
used as the policy user, in lieu of the signed-in user.

The following are the JCLS:

a. The PTYJSC1 is the compile JCL. The default is COBOL V5R2, but the programs will compile along with COBOL v4 or v6.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 134

b. The PTYRSC1 is the runtime JCL. The Data Element is passed in SYSIN.

13.5.19 PTYPSEIV

This PTYPSEIV COBOL program is parameter driven. It uses the stateless interface by calling it dynamically instead of calling
statically. The parameters are passed via the COBOL ACCEPT verb and DDNAME SYSIN.

Data element to be used, start position, length and the value of external IV are part of the parameters. Check the beginning of the
Procedure Division to see the parameters and their order. The example runtime also shows the parameters. The PTYPSEIV uses
the CFUDATAF input file.

Following are the the sample JCLs.

a. The PTYJEDL1 is the compile JCL. The default is COBOL V5R2, but the program will also compile with COBOL V4 or V6.

b. The PTYRSEIV is the runtime JCL. As shipped, the PTYPSLL is the interface program specified in the parameters. There is
a print step for the input, cipher, and clear files. There is also a compare step for the input and clear files.

13.5.20 PTYPCEIV

This PTYPCEIV COBOL program is parameter driven. It uses the stateful interface by calling it dynamically instead of calling
statically. The parameters are passed via the COBOL ACCEPT verb and DDNAME SYSIN.

Data element to be used, start position, length and the value of external IV are part of the parameters. Check the beginning of the
Procedure Division to see the parameters and their order. The example runtime also shows the parameters. The PTYPCEIV uses
the CFUDATAF input file.

Following are the the sample JCLs.

a. The PTYJEDL1 is the compile JCL. The default is COBOL V5R2, but the program will also compile with COBOL V4 or V6.

b. The PTYRCEIV is the runtime JCL. As shipped, the PTYPCXL is the interface program specified in the parameters. There is
a print step for the input, cipher, and clear files. There is also a compare step for the input and clear files.

Protegrity z/OS Protector Guide 7.0.1 z/OS Application Protector Samples

Confidential 135

Appendix

F
z/OS Database Protector Samples
This section contains the sample programs for performing various tasks using the z/OS Database Protector.

The following table describes the samples.

Table F-1: Sample Programs

No. JCL z/OS Database
Protector

Short Description

PTYxxxxx.DB2SAMP

1 DSN3SSGN Sample SIGNON authorization Exit for RACF environment

2 FPRTEST FIELDPROC Sample query to protect table using FIELDPROC

3 FPRPRNT FIELDPROC JCL to print the table data to verify protected or unprotected data in tables

4 PTYETEST EDITPROC JCL to provide required parameters to PTYGEP to generate customized EDITPROC; 4
characters mentioned in EPR# will be appended to PTYE to create the EDITPROC EXIT
name to be mentioned in CREATE table query in EPRTEST

5 PTYGEP EDITPROC JCL to execute PTYPGEP to build a customized EDITPROC exit program

6 PTYMDEP EDITPROC Defined EDITPROC map

7 EPRTEST EDITPROC Sample query to protect table using EDITPROC

8 EPRPRNT EDITPROC JCL to print the table data to verify protected or unprotected data in tables

9 FPRBTCH1 FIELDPROC LOAD or UNLOAD data in tables protected or unprotected with FIELDPROC in BATCH

10 FPRBTCH2 FIELDPROC INSERT or SELECT data in or from tables protected or unprotected with FIELDPROC in
BATCH

11 FPRBTCH3 FIELDPROC LOAD data from original table to FPR-protecetd table in BATCH

PTYxxxxx.UDFSAMP

1 PTYSPEPS Start the PEP server

2 PTYPPEPS Stop the PEP server

3 UDFBTCH1 INSERT, SELECT, or UPDATE UDFs for encryption or decryption in BATCH

4 UDFTEST Sample queries to test INSERT UDFs for encryption

5 UDFSLCT Sample queries to test SELECT UDFs for decryption

6 UDFUPDT Sample queries to test UPDATE UDFs for encryption

7 UDFTEST1 Sample queries to test INSERT UDFs for tokenization

8 UDFSLCT1 Sample queries to test SELECT UDFs for detokenization

9 UDFUPDT1 Sample queries to test UPDATE UDFs for tokenization

Protegrity z/OS Protector Guide 7.0.1 z/OS Database Protector Samples

Confidential 136

No. JCL z/OS Database
Protector

Short Description

10 UDFPRNT JCL to print the table data to verify protected or unprotected data in tables

Protegrity z/OS Protector Guide 7.0.1 z/OS Database Protector Samples

Confidential 137

Appendix

G
z/OS File Protector Samples

15.1 Test data

15.2 Sample Programs

This section contains the sample codes for performing various tasks using the z/OS File Protector.

15.1 Test data
There are three test data files included in the PTYnnnnn.FPSAMP library in XMIT format. Use the TSO RECEIVE command to
reload the data.

1. The CFUDATAF contains approximately one thousand records with 16 character numeric data similar to credit card numbers,
last names, and first names. This input data is for Fixed Blocked (FB) file formats.

2. The CFUDATAV contains approximately one thousand records with 16 character numeric data similar to credit card numbers,
last names, and first names. This input data is for Variable Block (VB) file formats.

3. The CFUDATAU contains approximately one thousand records with 16 character numeric data similar to credit card numbers,
last names, and first names. This input data is for Undefined (U) file formats.

15.2 Sample Programs
The following table describes the sample JCLs.

Table G-1: Sample Programs

No. JCL z/OS File Protector Short Description

1 CONCAMEX CSS - AMEX Protect or unprotect the data in concatenated files

2 CONCAMLT CSS - AMLT Protect or unprotect the data in concatenated files

3 CONCCFU CFU Protect or unprotect the data in concatenated files

4 DEMCFU CFU Protect the data

5 DEMCFU2 CFU Unprotect data, protected in job DEMCFU, and compare it with original data

6 DEMCSEX CSS - AMEX Protect the data

7 DEMCSEX2 CSS - AMEX Unprotect data, protected in job DEMCSEX and compare it with original data

8 DEMCSLT CSS - AMLT Protect the data

Protegrity z/OS Protector Guide 7.0.1 z/OS File Protector Samples

Confidential 138

No. JCL z/OS File Protector Short Description

9 DEMCSLT2 CSS - AMLT Unprotect data, protected in job DEMCSLT and compare it with original data

10 DEMFPCSS CFU - CSS Protect data with CFU and during unprotect, protect the unprotected data using CSS-
AMLT

11 PTYRAMEX CSS - AMEX Protect, unprotect, or compare the data of FB, VB, and U format files

12 PTYRAMLT CSS - AMLT Protect, unprotect, or compare the data of FB, VB, and U format files

13 PTYRFILE CFU Protect, unprotect, or compare the data of FB, VB, and U format files

14 USSAMEX CSS - AMEX Protect or unprotect the data in UNIX System Service file

15 USSAMLT CSS - AMLT Protect or unprotect the data in UNIX System Service file

16 USSCFU CFU Protect or unprotect the data in UNIX System Service file

Protegrity z/OS Protector Guide 7.0.1 z/OS File Protector Samples

Confidential 139

Appendix

H
z/OS IMS Protector Samples

16.1 Sample Code to Create DBD

16.2 Sample Code to Create PSB

16.3 JCL Sample to create Segment edit/compression exit routine

16.4 JCL Sample to run programs to LOAD/SELECT the IMS database

This section contains the following sample codes for performing various tasks with the IMS Protector for Mainframe.

16.1 Sample Code to Create DBD
The following sample code can be used to create DBD.

* *
* NAME: PTYDBD *
* *
* DESCRIPTION: DBD GEN FOR LIBRARY DATABASE *
* WITH COMPRESSION EXIT ROUTINE – PTYIC001 *
* HDAM WITH SEQ, FB *

 PRINT NOGEN
 DBD NAME=PTYDBD,ACCESS=(HDAM),RMNAME=(DFSHDC40,1,5,200)
 DATASET DD1=INDD
 SEGM
NAME=LIBSEG,PARENT=0,BYTES=30,COMPRTN=(PTYIC001,KEY)
 FIELD NAME=(BOOKID,SEQ,U),BYTES=5,START=1,TYPE=C
 FIELD NAME=ISSDATE,BYTES=10,START=6,TYPE=C
 FIELD NAME=RETDATE,BYTES=10,START=16,TYPE=C
 FIELD NAME=STUID,BYTES=5,START=26,TYPE=C
 SEGM NAME=BOOKSEG,PARENT=LIBSEG,BYTES=30
 FIELD NAME=(BOOKID,SEQ,U),BYTES=5,START=1,TYPE=C
 FIELD NAME=BOOKNAME,BYTES=10,START=6,TYPE=C
 FIELD NAME=BOOKAUTH,BYTES=15,START=16,TYPE=C
 SEGM NAME=TECHSEG,PARENT=BOOKSEG,BYTES=5
 FIELD NAME=(TBOOKID,SEQ,U),BYTES=5,START=1,TYPE=C
 SEGM NAME=NTECHSEG,PARENT=BOOKSEG,BYTES=5
 FIELD NAME=(NTBOOKID,SEQ,U),BYTES=5,START=1,TYPE=C
 SEGM NAME=STUSEG,PARENT=LIBSEG,BYTES=25
 FIELD NAME=(STUID,SEQ,U),BYTES=5,START=1,TYPE=C
 FIELD NAME=STUNAME,BYTES=15,START=6,TYPE=C
 FIELD NAME=STUDIV,BYTES=5,START=16,TYPE=C
 DBDGEN

Protegrity z/OS Protector Guide 7.0.1 z/OS IMS Protector Samples

Confidential 140

 FINISH
 END

16.2 Sample Code to Create PSB
This section contains the following sample codes to create PSB.

The following are the sample codes to create PSB:

• Creating PSB with the LOAD Operation

• Creating PSB with the SELECT Operation

16.2.1 Creating PSB with the LOAD Operation

The following sample code can be used to create PSB with the LOAD Operation.

PRINT NOGEN
PCB DBDNAME=PTYDBD,TYPE=DB,KEYLEN=50,PROCOPT=L
SENSEG NAME=LIBSEG
SENSEG NAME=BOOKSEG,PARENT=LIBSEG
SENSEG NAME=TECHSEG,PARENT=BOOKSEG
SENSEG NAME=NTECHSEG,PARENT=BOOKSEG
SENSEG NAME=STUSEG,PARENT=LIBSEG
PSBGEN PSBNAME=PTYPSBL,LANG=COBOL,CMPAT=YES
END

16.2.2 Creating PSB with the SELECT Operation

The following sample code can be used to create PSB with the SELECT Operation.

PRINT NOGEN
PCB DBDNAME=PTYDBD,TYPE=DB,KEYLEN=50,PROCOPT=G
SENSEG NAME=LIBSEG
SENSEG NAME=BOOKSEG,PARENT=LIBSEG
SENSEG NAME=TECHSEG,PARENT=BOOKSEG
SENSEG NAME=NTECHSEG,PARENT=BOOKSEG
SENSEG NAME=STUSEG,PARENT=LIBSEG
PSBGEN PSBNAME=PTYPSBS,LANG=COBOL,CMPAT=YES
END

16.3 JCL Sample to create Segment edit/compression exit routine
The following is a JCL sample to create Segment edit/compression exit routine.

//PTYITEST JOB ,MSGCLASS=H,NOTIFY=&SYSUID
//*---
//* PTYITEST - GENERATE CUSTOMIZED EXIT ROUTINE, PTYITEST
//*---
//*
//PTYITEST EXEC PTYGIM,DBD#=C001,DATAELEM='CUSP_TRDES',COMPRESS='Y'

16.4 JCL Sample to run programs to LOAD/SELECT the IMS database
This section contains the following JCL sample codes to run programs to LOAD/SELECT the IMS database.

The following are the JCL sample codes to run programs to LOAD/SELECT IMS database:

• JCL Sample to run a program to LOAD the IMS database

• JCL Sample to run a program to SELECT the IMS database

Protegrity z/OS Protector Guide 7.0.1 z/OS IMS Protector Samples

Confidential 141

16.4.1 JCL Sample to run a program to LOAD the IMS database

The following JCL sample code can be used to run a program to LOAD the IMS Database.

//RUNJCLI JOB ,MSGCLASS=H,NOTIFY=&SYSUID
//*--
//* RUN PGMINS - ENCRYPTION
//*--
//*STEP01 EXEC PGM=DFSRRC00,PARM=(DLI,PROGRAM,PSB NAME,,,)
//STEP01 EXEC PGM=DFSRRC00,REGION=4M,PARM=(DLI,PTYPIM1,PTYPSBL)
//STEPLIB DD DSN=IMS1210.SDFSRESL,DISP=SHR
// DD DSN=IMS1210.USER.SDFSRESL,DISP=SHR
// DD DSN=IMS1210.PGMLIB,DISP=SHR
// DD DSN=SURUCHI.IMS1210.LOADLIB,DISP=SHR
//INPFILE DD DSN=SURUCHI.IMS1210.INPDATA,DISP=SHR
//DFSRESLB DD DSN=IMS1210.SDFSRESL,DISP=SHR
// DD DSN=IMS1210.USER.SDFSRESL,DISP=SHR
//IMS DD DSN=SURUCHI.IMS1210.PSBLIB,DISP=SHR
// DD DSN=SURUCHI.IMS1210.DBDLIB,DISP=SHR
//INDD DD DSN=SURUCHI.IMS1210.ESDSINP,DISP=(OLD,KEEP)
//PROCLIB DD DSN=IMS1210.PROCLIB,DISP=SHR
//DFSVSAMP DD *
VSRBF=8192,10
VSRBF=4096,5
VSRBF=2048,5
VSRBF=1024,5
VSRBF=512,5
//IEFRDER DD DSN=IMSLOG,DISP=(,KEEP),
// SPACE=(605,(500,500),RLSE,,ROUND),
// DCB=(RECFM=VB,BLKSIZE=4096,
// LRECL=4092,BUFNO=2)
//SYSUDUMP DD SYSOUT=A,
// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=605),
// SPACE=(605,(500,500),RLSE,,ROUND)
//IMSMON DD DUMMY

16.4.2 JCL Sample to run a program to SELECT the IMS database

The following JCL sample code can be used to run a program to SELECT the IMS Database.

//RUNJCLS JOB ,MSGCLASS=H,NOTIFY=&SYSUID
//*--
//* RUN PGMSEL - DECRYPTION
//*--
//*STEP01 EXEC PGM=DFSRRC00,PARM=(DLI,PROGRAM,PSB NAME,,,)
//STEP01 EXEC PGM=DFSRRC00,REGION=4M,PARM=(DLI,PTYPIM2,PTYPSBS)
//STEPLIB DD DSN=IMS1210.SDFSRESL,DISP=SHR
// DD DSN=IMS1210.USER.SDFSRESL,DISP=SHR
// DD DSN=IMS1210.PGMLIB,DISP=SHR
// DD DSN=SURUCHI.IMS1210.LOADLIB,DISP=SHR
//INPFILE DD DSN=SURUCHI.IMS1210.INPDATA,DISP=SHR
//OUTFILE DD DSN=SURUCHI.IMS1210.OUTDATA,DISP=SHR
//DFSRESLB DD DSN=IMS1210.SDFSRESL,DISP=SHR
// DD DSN=IMS1210.USER.SDFSRESL,DISP=SHR
//IMS DD DSN=SURUCHI.IMS1210.PSBLIB,DISP=SHR
// DD DSN=SURUCHI.IMS1210.DBDLIB,DISP=SHR
//RECON1 DD DSN=IMS1210.RECON1,DISP=SHR
//RECON2 DD DSN=IMS1210.RECON2,DISP=SHR
//INDD DD DSN=SURUCHI.IMS1210.ESDSINP,DISP=SHR
//PROCLIB DD DSN=IMS1210.PROCLIB,DISP=SHR
//DFSVSAMP DD *
VSRBF=8192,10
VSRBF=4096,5
VSRBF=2048,5
VSRBF=1024,5
VSRBF=512,5
//IEFRDER DD DSN=IMSLOG,DISP=(,KEEP),
// SPACE=(605,(500,500),RLSE,,ROUND),
// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092,BUFNO=2)
//SYSUDUMP DD SYSOUT=A,
// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=605),

Protegrity z/OS Protector Guide 7.0.1 z/OS IMS Protector Samples

Confidential 142

// SPACE=(605,(500,500),RLSE,,ROUND)
//IMSMON DD DUMMY

Protegrity z/OS Protector Guide 7.0.1 z/OS IMS Protector Samples

Confidential 143

Appendix

I
Security Considerations
This section contains suggestions about how to use the external security manager of z/OS to provide additional security for the
Protegrity z/OS protector software.

Protecting the common software libraries:

• The PTYnnnnn.SPTYAUTH and PTYnnnnn.SPTYAUTX libraries only need to be readable by the started task shown as
PTYCSRV in the PTYnnnnn.SPTYSAMP library. None of the members are used by any other Protegrity task and normal user
applications do not need access to these libraries.

• The PTYnnnnn.SPTYSAMP library contains samples only. The member PTYPARM contains the samples that are the startup
parameter for the PTYCSRV task, but do not need to remain in the PTYnnnnn.SPTYSAMP library to be used by the PTYCSRV.
The SPTYPARM DD statement points to the appropriate member. The member PTY$ENV contains the Open MVS environmental
variables for the SPTYSPEP JCL and needs to be in a library that the started task can access.

Protecting the Application Protector libraries:

• The PTYnnnnn.APLOAD library needs to be available to all the applications that will be using the Protegrity Application
Protector. The members can be in site common application library or remain in the Protegrity library. All the members can be
link-edited with the application or loaded dynamically. The applications should need only the read access to this library.

• The PTYnnnnn.APSAMP library contains the source sample programs and PTYnnnnn.APSCNTL library contains the associated
JCLs to compile and run them.Some sample data used by several members are also included in the XMIT format. Only the read
access should be necessary. Most of the programs will run in batch or in CICS.

• The PTYnnnnn.APSLOD library contains the compiled versions of several sample programs.

Protecting the Database Protector libraries:

• The PTYnnnnn.DB2AUTH library contains the executables that should be protected. Only the xxxxDBM1 task needs the read and
execute access to this dataset. The xxxx is the DB2 region name. Only the maintainer needs the write access.

• The PTYnnnnn.DB2LOAD library contains the utility programs. The PTYPGEP is used to generate a customized EDITPROC
program. The PTYPSGN is a DB2 SIGNON exit program. Only the jobs that might use these need the read access.

• The PTYnnnnn.DB2SAMP library contains the sample JCL and SQL programs. The EPRxxxx and FPRxxxx members are the
samples that show how the EDITPROC and FIELDPROC programs work. The PTYGEP is the JCL to execute the PTYPGEP to
build a customized EDITPROC exit program. The combination adds the data element name to the EDITPROC.

• The PTYnnnnn.UDFxxxx libraries are for the Protegrity DB2 User Defined Functions (UDFs) and only need to be available if the
UDFs are to be used. If the UDFs are not going to be used, then these libraries can be deleted.

• The PTYnnnnn.UDFSQL library contains the CREATE and DROP SQL commands to define the UDFs for DB2. These commands
only need to be available for the DB2 DBA installing or uninstalling the UDFs. The CREATE command needs to be customized
before use, as documented.

Protegrity z/OS Protector Guide 7.0.1 Security Considerations

Confidential 144

• The PTYnnnnn.UDFUDFX library contains the UDF executables. This library needs to be in the STEPLIB concatenation of the
WLM job(s) that will run the SQL calling the UDFs. Only the WLM job(s) need the read and execute authority.

• The PTYnnnnn.UDFSAMP library contains the sample jobs to start and stop the PEP server. If you have run the install jobs in the
PTYnnnnn.SPTYSAMP, then you can use the customized jobs from that process in lieu of these jobs. The UDFs only need the
PEP server started and do not need the Protegrity Cryptographic Server. The UDFxxxx members are the samples that show how to
use the UDFs.

Protecting the File Protector libraries:

• The PTYnnnnn.FPAUTH library contains the Protegrity executables that need to go into the LPA. These routines are called from
the OPEN SVC. The library needs to be authorized, and have read and execute authority for z/OS. No individual job needs read or
execute authority for these routines. You can leave these routines in the Protegrity library or use your own LPA library.

• The PTYnnnnn.FPLOAD contains the PTYPFILE member and the PTYPVER member which is called by the PTYPFILE. These
routines needs to be in a library, available to all of the jobs that will use the Cryptographic File Utility. This library does NOT need
to be authorized. The PTYPFILE runs in user key.

• The PTYnnnnn.FPSAMP library contains the JCL and sample data to show how the Cryptographic File Utility and Cryptographic
SubSystem work. The sample data is in XMIT format in the library.

Protecting the Shared Memory:

• The PEP server (job PTYSPEPS), will create multiple shared memories of different sizes that are used as virtual files. All are
multiples of 1 MB even though some could be smaller. Having the size being a multiple of 1 MB allows various tasks to share the
shared memory and not just have a copy of the shared memory. This reduces the overall use of memory. The executables are not
stored in any of these shared memories, only data is stored so no execute authority permission should be allowed.

• The shared memory with a size of 8388608 bytes or 8 MB (in binary) is the logging shared memory. This shared memory needs
to be readable and writable by the PEP server, the Cryptographic Services Manager task, and by any WLM tasks that will use
Protegrity User Defined Functions (UDFs). It is suggested that a Protegrity group be created in the External Security Manager, and
that this group have the read and write access to this shared memory.

• The other shared memories need to have the read and write permissions for the PEP server task, but only readable by the rest of the
Protegrity group.

Note:

In the file names the "nnnnn" refers to the product version. Unless otherwise stated, all are suggestions, not requirements, and all pertain to all
the versions of Protegrity z/OS software.

Protegrity z/OS Protector Guide 7.0.1 Security Considerations

Confidential 145

	Copyright
	Table of Contents
	1 Introduction To This Guide
	1.1 Sections contained in this Guide
	1.2 Accessing the Protegrity documentation suite
	1.2.1 Viewing product documentation
	1.2.2 Downloading product documentation

	2 Overview of the Protegrity z/OS Protectors
	2.1 Architecture
	2.2 Components of the z/OS Protector
	2.2.1 Protection Enforcement Point (PEP) Server
	2.2.2 Cryptographic Services Module
	2.2.3 DB2 Database Protectors
	2.2.4 Application Protectors
	2.2.5 File Protectors
	2.2.6 IMS Protectors

	2.3 Features of z/OS Protector
	2.4 Limitations
	2.5 Supported Database Matrix

	3 Prerequisites for Installing the z/OS Product
	3.1 PEP Server on Open MVS (Unix System Services)
	3.1.1 Environment Requirements
	3.1.2 Setup Requirements

	3.2 Cryptographic Servers on z/OS MVS
	3.2.1 Setup Overview
	3.2.1.1 Servers
	3.2.1.2 Distribution Files
	3.2.1.3 Modules
	3.2.1.4 Cryptographic Hardware

	4 Installing the z/OS Product
	4.1 Installing the PEP Server
	4.1.1 Configuring case sensitivity in PEP Server for Policy users

	4.2 Installing the Cryptographic Server
	4.2.1 Sample Jobs to Verify the Installation
	4.2.1.1 Starting PEP Server
	4.2.1.2 Stopping PEP Server
	4.2.1.3 Starting Cryptographic Services Task

	4.3 Activating Protegrity Data Security Platform
	4.4 Deploying a Test Policy
	4.5 Verifying the Installation
	4.5.1 PTYCSRV Return Messages

	4.6 Upgrading the z/OS Protector

	5 Application Protector on Mainframe z/OS
	5.1 Installing and Customizing the Application Protector on z/OS
	5.1.1 Installing the Cryptographic Service Interfaces on Mainframe z/OS
	5.1.2 Verifying Installation

	5.2 Stateless Interfaces (APIs): PTYPSLI, PTYPSLL, and PTYPSLC
	5.2.1 COBOL Parameters to call Stateless Interfaces
	5.2.2 Summary of all Parameters for PTYPSLI, PTYPSLL, and PTYPSLC
	5.2.2.1 Functions performed by Stateless Interfaces
	5.2.2.1.1 Encrypt Functions
	5.2.2.1.1.1 CSI-Encrypt Function
	5.2.2.1.1.2 CSI-Encrypt SFW

	5.2.2.1.2 Decrypt Functions
	5.2.2.1.2.1 CSI-Decrypt Function
	5.2.2.1.2.2 CSI-Decrypt SFW

	5.2.2.1.3 CSI-Query DDE

	5.2.3 Return and Reason Codes

	5.3 Stateful Interfaces: PTYPCXI and PTYPCXL
	5.3.1 COBOL Prameters to call Stateful Interfaces
	5.3.2 Summary of all Parameters for PTYPCXI and PTYCXL
	5.3.2.1 Functions performed by Stateful Interfaces
	5.3.2.1.1 Connect Configuration
	5.3.2.1.2 Encrypt Configuration
	5.3.2.1.3 Decrypt Configuration
	5.3.2.1.4 Disconnect Configuration
	5.3.2.1.5 Default Data Element (DDE) Configuration
	5.3.2.1.6 Current Data Element Key ID Query Configuration

	5.3.3 Return and Reason Codes

	6 File Protector Solutions on Mainframe z/OS
	6.1 Installing and Customizing File Protector on z/OS
	6.1.1 Setting up File Protector on Mainframe z/OS
	6.1.2 Installing and Customizing SIAM Subsystem
	6.1.2.1 Installing Dynamic CSS
	6.1.2.2 Installing Permanent CSS
	6.1.2.3 Controlling Access to CSS

	6.2 Cryptographic File Utility for z/OS
	6.2.1 Executing Protegrity Cryptographic File Utility
	6.2.1.1 Parameter File
	6.2.1.2 Input File Specifications
	6.2.1.3 Output File Specifications

	6.3 Cryptographic Subsystem for z/OS
	6.3.1 CSS Subsystem Usage

	6.4 CSS and CFU Comparative Properties

	7 Database Solutions on Mainframe z/OS
	7.1 Installing and Configuring
	7.1.1 Setting up Database Protector on Mainframe z/OS
	7.1.1.1 DB2 Protector Installation
	7.1.1.2 Protector Installation Verification
	7.1.1.2.1 Verifying FIELDPROC
	7.1.1.2.2 Verifying EDITPROC

	7.2 FIELDPROC Usage
	7.2.1 DB2 Passes Control to Field Procedure
	7.2.2 FIELDPROC Restrictions and Limitations
	7.2.3 Unprotect Only FIELDPROC

	7.3 EDITPROC Usage
	7.3.1 DB2 Passes Control to an Edit Procedure
	7.3.2 EDITPROC Restrictions and Limitations
	7.3.3 EDITPROC with Compression and Decompression support

	7.4 Installing Protegrity User Defined Functions
	7.4.1 Pre-Installation Configuration
	7.4.2 Installing UDFs
	7.4.3 General UDFs
	7.4.3.1 pty.whoami
	7.4.3.2 pty.getversion
	7.4.3.3 pty.getcurrentkeyid
	7.4.3.4 pty.getkeyid

	7.4.4 Access Check UDFs
	7.4.4.1 pty.have_sel_perm
	7.4.4.2 pty.have_upd_perm
	7.4.4.3 pty.have_ins_perm
	7.4.4.4 pty.have_del_perm
	7.4.4.5 pty.del_check

	7.4.5 VARCHAR UDFs
	7.4.5.1 pty.ins_enc_varchar
	7.4.5.2 pty.upd_enc_varchar
	7.4.5.3 pty.sel_dec_varchar
	7.4.5.4 pty.ins_varchar
	7.4.5.5 pty.upd_varchar
	7.4.5.6 pty.sel_varchar
	7.4.5.7 pty.ins_hash_varchar
	7.4.5.8 pty.upd_hash_varchar

	7.4.6 VARCHAR FOR BIT DATA UDFs
	7.4.6.1 pty.ins_enc_varcharfbd
	7.4.6.2 pty.upd_enc_varcharfbd
	7.4.6.3 pty.sel_dec_varcharfbd
	7.4.6.4 pty.ins_varcharfbd
	7.4.6.5 pty.upd_varcharfbd
	7.4.6.6 pty.sel_varcharfbd

	7.4.7 CHAR UDFs
	7.4.7.1 pty.ins_enc_char
	7.4.7.2 pty.upd_enc_char
	7.4.7.3 pty.sel_dec_char

	7.4.8 CHAR FOR BIT DATA UDFs
	7.4.8.1 pty.ins_enc_charfbd
	7.4.8.2 pty.upd_enc_charfbd
	7.4.8.3 pty.sel_dec_charfbd

	7.4.9 DATE UDFs
	7.4.9.1 pty.ins_enc_date
	7.4.9.2 pty.upd_enc_date
	7.4.9.3 pty.sel_dec_date
	7.4.9.4 pty.ins_date
	7.4.9.5 pty.upd_date
	7.4.9.6 pty.sel_date

	7.4.10 TIMESTAMP UDFs
	7.4.10.1 pty.ins_enc_timestamp
	7.4.10.2 pty.upd_enc_timestamp
	7.4.10.3 pty.sel_dec_timestamp

	7.4.11 TIME UDFs
	7.4.11.1 pty.ins_enc_time
	7.4.11.2 pty.upd_enc_time
	7.4.11.3 pty.sel_dec_time
	7.4.11.4 pty.ins_time
	7.4.11.5 pty.upd_time
	7.4.11.6 pty.sel_time

	7.4.12 INTEGER UDFs
	7.4.12.1 pty.ins_enc_integer
	7.4.12.2 pty.upd_enc_integer
	7.4.12.3 pty.sel_dec_integer
	7.4.12.4 pty.ins_integer
	7.4.12.5 pty.upd_integer
	7.4.12.6 pty.sel_integer

	7.4.13 SMALLINT UDFs
	7.4.13.1 pty.ins_enc_smallint
	7.4.13.2 pty.upd_enc_smallint
	7.4.13.3 pty.sel_dec_smallint
	7.4.13.4 pty.ins_smallint
	7.4.13.5 pty.upd_smallint
	7.4.13.6 pty.sel_smallint

	7.4.14 REAL UDFs
	7.4.14.1 pty.ins_enc_real
	7.4.14.2 pty.upd_enc_real
	7.4.14.3 pty.sel_dec_real
	7.4.14.4 pty.ins_real
	7.4.14.5 pty.upd_real
	7.4.14.6 pty.sel_real

	7.4.15 DOUBLE UDFs
	7.4.15.1 pty.ins_enc_double
	7.4.15.2 pty.upd_enc_double
	7.4.15.3 pty.sel_dec_double
	7.4.15.4 pty.ins_double
	7.4.15.5 pty.upd_double
	7.4.15.6 pty.sel_double

	8 The IMS Solutions on Mainframe z/OS
	8.1 Installing and Configuring the IMS Protector on Mainframe z/OS
	8.1.1 Setting Up the IMS Protector
	8.1.2 Verifying the IMS Protector Installation

	8.2 Segment Edit/Compression Exit Routine
	8.2.1 Specifying the Segment Edit/Compression Exit Routine
	8.2.2 IMS Protector Restrictions and Limitations
	8.2.3 Usage of Compression and Decompression Facility
	8.2.4 Return and Reason Codes

	8.3 PTYPSLL/PTYPSLI to protect/unprotect IMS data

	9 Uploading Certificates from ESA to z/OS Manually
	10 Sample Codes for Automated Installation
	10.1 Sample JCL to Execute the Script to Update the pepserver.cfg file
	10.2 Sample Code to use the BPXBATCH to Install the PEP Server
	10.3 Details on the JMVS jcl to Install the Cryptographic Server

	11 Sample Code for the PTYPARM Configuration file
	12 Sample RACF Setup for the Started tasks
	13 z/OS Application Protector Samples
	13.1 Test Data
	13.2 Copybooks
	13.3 Compilation of programs
	13.4 Interfaces
	13.5 Detailed Descriptions of COBOL programs and JCLs
	13.5.1 ENCDEC
	13.5.2 ENCDECL1
	13.5.3 ENCDECX1
	13.5.4 PTYPAP1 and PTYPAP2
	13.5.5 PTYPAX1 and PTYPAX2
	13.5.6 PTYPSL1 and PTYPSL2
	13.5.7 PTYQCKID
	13.5.8 PTYQDDES
	13.5.9 PTYQDDEX
	13.5.10 PTYQDKID
	13.5.11 PTYVSAM
	13.5.12 PTYVSAM1
	13.5.13 PTYVSAM2
	13.5.14 PTYVSAM3 and PTYVSAM4
	13.5.15 PTYIMS1 and PTYIMS2
	13.5.16 PTYIMS3 and PTYIMS4
	13.5.17 PTYSLLDB
	13.5.18 PTYPSC1
	13.5.19 PTYPSEIV
	13.5.20 PTYPCEIV

	14 z/OS Database Protector Samples
	15 z/OS File Protector Samples
	15.1 Test data
	15.2 Sample Programs

	16 z/OS IMS Protector Samples
	16.1 Sample Code to Create DBD
	16.2 Sample Code to Create PSB
	16.2.1 Creating PSB with the LOAD Operation
	16.2.2 Creating PSB with the SELECT Operation

	16.3 JCL Sample to create Segment edit/compression exit routine
	16.4 JCL Sample to run programs to LOAD/SELECT the IMS database
	16.4.1 JCL Sample to run a program to LOAD the IMS database
	16.4.2 JCL Sample to run a program to SELECT the IMS database

	17 Security Considerations

